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Abstract
The composed image retrieval (CIR) task is to retrieve target images
given a reference image and a modification text. Recent methods
for CIR leverage large pretrained vision-language models (VLMs)
and achieve good performance on general-domain concepts like
color and texture. However, they still struggle with application
domains like fashion, because the rich and diverse vocabulary
used in fashion requires specific fine-grained vision and language
understanding. An additional difficulty is the lack of large-scale
fashion datasets with detailed and relevant annotations, due to
the expensive cost of manual annotation by specialists. To ad-
dress these challenges, we introduce FACap, a large-scale, au-
tomatically constructed fashion-domain CIR dataset. It leverages
web-sourced fashion images and a two-stage annotation pipeline
powered by a VLM and a large language model (LLM) to gener-
ate accurate and detailed modification texts. Then, we propose
a new CIR model FashionBLIP-2, which fine-tunes the general-
domain BLIP-2 model on FACap with lightweight adapters and
multi-head query-candidate matching to better account for fine-
grained fashion-specific information. FashionBLIP-2 is evaluated
with and without additional fine-tuning on the Fashion IQ bench-
mark and the enhanced evaluation dataset enhFashionIQ, leverag-
ing our pipeline to obtain higher-quality annotations. Experimental
results show that the combination of FashionBLIP-2 and pretrain-
ing with FACap significantly improves the model’s performance in
fashion CIR especially for retrieval with fine-grained modification
texts, demonstrating the value of our dataset and approach in a
highly demanding environment such as e-commerce websites. Code
is available at https://fgxaos.github.io/facap-paper-website/.
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1 Introduction

(a) Examples from the FashionIQ dataset [52]. Left: incorrect annotation
(the target dress is not pink). Right: vague annotation lacking sufficient
details to accurately retrieve the target image, like color or shape.

(b) Example from our FACap dataset.

Figure 1: Our automatically constructed FACap dataset offers
more detailed and accurate annotations than existing datasets
for the fashion CIR task.

Efficiently retrieving fashion images based on user preferences
is crucial for enhancing e-commerce experience, from online shop-
ping to inspiration and brand discovery. The preferences relate
both to search interaction preferences —querying with images for
instance —and taste and vocabulary preference to really adapt to
user needs. Traditional image-to-image [42] or text-to-image [38]
retrieval methods primarily support single-modality queries and
fall short in handling more complex, real-world scenarios. For in-
stance, a user may want to find a product similar to the one they
have seen before, but with specific changes, like a different color,
style, or feature. To address this, recent works have increasingly
focused on composed image retrieval (CIR) [48, 52], which aims to
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retrieve relevant fashion images by leveraging a reference image
along with a modification text that describes specific alterations.

Most existing methods for Fashion CIR [5, 10, 34, 35, 55, 56] fine-
tune pretrained vision-language models (VLMs) like CLIP [37] or
BLIP-2 [25] to map images and texts into a shared multimodal space.
The embeddings of the reference image and modification text are
then fused and compared with the embeddings of candidate images
to identify the most relevant match. However, these approaches
are constrained by the limitations of current Fashion CIR datasets.
For example, FashionIQ [52], a widely used dataset for this task,
is limited in scale, containing only 18k <reference image, modifica-
tion text, target image> triplets across just three fashion categories:
dresses, shirts, and tops. A larger scale dataset would be able to bet-
ter represent the concept diversity of fashion-domain knowledge.
Furthermore, the crowdsourced captions in FashionIQ are short,
noisy and lack details, as shown in Figure 1a and confirmed by our
quality evaluation in Table 2. A better CIR experience is expected
from three features of the modification text: faithfulness, levels of
detail and discriminative power. Reaching a high level of quality is
time-consuming and expensive, as it requires to manually annotate
a large number of CIR triplets. The noisy and limited data available
today hinder the existing models’ ability to understand fine-grained
fashion-related features crucial for fashion search tasks, such as
specific collar types or textures.

To tackle the data scarcity challenge, some approaches have at-
tempted to increase the data size, for example by generating reverse
descriptions [34] for reference and target images; but generating
difference descriptions for two images [36] is itself a challenging
task. Other approaches attempt to eliminate the need for training
data by performing zero-shot CIR [4, 21, 28, 40, 45, 54] with the
help of pretrained VLMs, but their performance suffers from the
absence of domain-specific representation learning. More recent
efforts pretrain VLMs using web-crawled fashion images to learn
more accurate multimodal representations for fashion [55, 56], but
raw web data are often noisy and lack the necessary comparisons
between pairs of images for effective CIR training.

In this work, we introduce Fashion Automatic Caption (FACap),
a large-scale fashion-domain CIR dataset with fine-grained annota-
tions. FACap automatically pairs web-sourced fashion images and
employs a two-stage annotation pipeline to generate modification
texts, hence creating CIR triplets. The first stage refines original
noisy web captions using a VLM to produce long, faithful, and
detailed descriptions for each image. The second stage utilizes a
large language model (LLM) to analyze the differences between
reference and target image captions, generating concise and accu-
rate modification texts. With over 227k CIR triplets, FACap offers a
high-quality dataset addressing the challenges of scale, accuracy,
and detail in fashion CIR, as evidenced in our quality evaluation.
We also introduce the FashionBLIP-2 model for Fashion CIR task
using BLIP-2 [25] as backbone, and lightweight adapter modules
to specialize it for fashion retrieval needs. Additionally, instead
of relying on global features to match the multimodal query and
candidate image, we design a multi-head query-candidate matching
method that uses multiple feature representations to capture more
fine-grained details. We evaluate the performance of our model in
two settings: with and without fine-tuning on downstream fash-
ion datasets. Experimental results demonstrate that pretraining on

FACap significantly improves model performance for Fashion CIR
and showcase the effectiveness of our FashionBLIP-2 model.

To summarize, our contribution is three-fold:
•We propose an automatic data construction method to scale up
Fashion CIR datasets with web-sourced images and foundation
models, resulting in a large-scale and high-quality dataset FACap.
• We propose the FashionBLIP-2 model, incorporating BLIP-2 with
lightweight adapters for fashion domain adaptation and multi-head
matching to cover fine-grained details.
• Experimental results on two benchmarks with and without down-
stream fine-tuning demonstrate the value of FACap and our model.

2 Related Work
2.1 Composed Image Retrieval
Existing approaches [5, 10, 34, 35, 55, 56] to composed image re-
trieval (CIR) mainly focus on learning a joint representation of the
reference image and the modification text. The CLIP4CIR [5] model
leverages CLIP [37] to encode images and texts and then uses MLPs
to aggregate embeddings of the two modalities. To further enhance
the modality representation, recent works [3, 34] have employed
more powerful pretrained multimodal models such as BLIP [26]
and BLIP-2 [25], yielding significant performance improvements.
However, these methods rely on a single global vector for repre-
sentation, which limits their ability to capture fine-grained details.
To improve fine-grained CIR, TG-CIR [51] introduces both global
and local attribute features with orthogonal regularization to learn
more independent attribute features. ARTEMIS [8] and CaLa [19]
propose two auxiliary methods leveraging image-text interactions
in the CIR triplet to enhance query-target matching. Liu et al. [35]
employ a two-stage approach, where the first stage uses a single
global feature to filter out easy negatives, and the second stage
leverages a dual-encoder architecture for fine-grained re-ranking.
SPRC [3] proposes an additional sentence-level prompt for image-
text fusion and a text prompt alignment loss to improve prompt
learning.

One key challenge in CIR is the lack of high-quality super-
vised data. Existing CIR datasets, such as Fashion IQ [52], CIRR
[33] and CIRCO [4], are significantly smaller than broader vision-
language datasets like COCO [29] and LAION-5B [41]. To address
this limitation, a line of work focuses on zero-shot CIR (ZS-CIR)
[4, 21, 28, 40, 45, 54], aiming to develop generalized CIR models
without the need for annotated data. ZS-CIR methods typically
translate an image into text with a captioning model or textual in-
version [11]. Yet, the performance gap between zero-shot methods
and fully domain-adapted ones remains significant. Another type
of approaches explores data augmentation [34] and synthetic data
generation [10, 13, 22, 47]. BLIP4CIR+Bi [34] extends CIR datasets
by adding reverse triplets, but results in less specific and less ac-
curate modification texts. CompoDiff [13] uses an LLM to create
new modification texts and generates the corresponding target
images with a diffusion model[18, 39]. However, limitations in im-
age generation models compromise the faithfulness and quality
of the generated images. SPN [10], LaSCo [22], and CoVR-2 [47]
instead only leverage VLMs and LLMs to generate modification
texts for paired real images or videos. But these datasets focus more
on general-domain images and fail to capture the fine-grained,
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Figure 2: The proposed data construction pipeline to automatically generate CIR triplets. The images are extracted from large
existing fashion datasets, then paired based on their visual similarity with images from the same product category. Then, our two-stage
annotation process captions the images with a VLM, and an LLM generates a synthetic description of the changes applied on the reference
image to obtain the target image.

fashion-specific vocabulary and visual details critical for fashion
CIR tasks.

To improve fashion-domain CIR, recent efforts have focused on
improving the pretraining of large multimodal models on fashion
images. FashionViL [15] proposes a multi-view contrastive learn-
ing approach and pseudo-attributes classification to improve repre-
sentation learning with fashion image-text pairs. Zhao et al. [56]
proposes a progressive learning strategy, transitioning from general-
domain pretraining to fashion domain pretraining. FAME-ViL [16]
uses multi-task learning on heterogeneous fashion tasks, while Uni-
Fashion [55] further extends pretraining fashion datasets and tasks
to include a broader range of multimodal generation and retrieval
tasks, achieving state-of-the-art results in fashion CIR benchmarks.
Nevertheless, existing fashion-focused pretraining mainly relies
on image-text pairs rather than CIR triplets due to the scarcity of
annotated triplets, limiting the model’s ability to learn comparisons
between two images. In this work, we address this gap by designing
an automatic method to generate CIR triplets from fashion-domain
images, and enhance pretraining efficiency for fashion CIR.

2.2 Large vision and language models
Recently, large languagemodels (LLMs) like GPT [6] and LLaMA [9]
have achieved remarkable success on various textual tasks like text
generation and reasoning. Building on this foundation, numerous
models have been developed to extend LLMs with visual perception
capabilities by encoding images as inputs to the LLMs, resulting
in powerful large vision-language models (VLMs) like BLIP-2 [25],
LLaVA [31], GPT-4V [1], InternVL [7] and many more [12, 49].
These VLMs effectively combine textual and visual information
and have set new benchmarks across diverse tasks such as image
captioning [29], visual question answering [2] and so on.

(a) The dress is sleeker and
more form-fitting, with a round
neckline and a sleeveless de-
sign, featuring a denser floral
pattern in black and white on a
white base.

(b) The skirt is shorter andmore
form-fitting with a mini length,
featuring a classic tartan plaid
pattern in black, white, and red,
and a smooth woven texture in-
stead of the layered effect.

Figure 3: Examples from the FACap dataset. The caption of
each image pair corresponds to their modification text.

While most VLMs are designed to process single-image inputs,
recent advancements [1, 23, 24, 30] have aimed to improve multi-
image capabilities. However, this progress introduces two key chal-
lenges. First, on the model side, handling multiple images signif-
icantly increases the token count, leading to issues with context
length. To address this, various image token compression tech-
niques [27, 43] have been proposed for VLMs. Second, on the data
side, multi-view image datasets [30] remain limited, restricting the
ability of current VLMs to excel in multi-image reasoning tasks. In
this work, instead of directly using VLMs to generate modification
texts for image pairs, we propose a two-stage pipeline that lever-
ages the strengths of VLMs for detailed single-image captioning
and LLMs for advanced text reasoning. This approach ensures high-
quality annotations that precisely capture the fine-grained details
essential for fashion CIR.



GENNEXT@SIGIR’25, July 17, 2025, Padova, Italy Gardères et al.

Table 1: Comparison of different datasets. We exclude certain web image sources to avoid licensing constraints, resulting in fewer
unique images than the FACAD dataset [53]. FACAD also includes noisy web descriptions with unstandardized language, leading to a larger
vocabulary size. Instead, the captions in our FACap are automatically cleaned and contain more details.

#Uniq imgs Ann. type Pair type #Pairs Vocab size Avg. length

MSCOCO [29] 328,000 Manual <img, caption> 1,640,000 26,848 10.5

FACAD [53] 993,000 Web <img, caption> 130,000 15,807 21
FashionIQ [52] 25,136 Manual <ref img, mod txt, tgt img> 18,000 4,401 6.36

FACap (Ours) 227,680 Auto <ref img, mod txt, tgt img> 227,680 9,273 23.38
<img, caption> 227,680 18,689 82.90

3 The Fashion Automatic Caption Dataset
To tackle the data scarcity challenge in fashion-domain CIR, we
introduce a large-scale Fashion Automatic Caption dataset (FACap),
generated automatically using existing fashion image datasets and
foundation models. It provides detailed image captions and CIR
triplets with both global and fashion-specific vocabulary, so that
CIR methods can leverage precise fine-grained textual and visual
concepts.

3.1 Dataset Construction
Our goal is to generate triplets of the form <reference image, modi-
fication text, target image> for Fashion CIR. Figure 2 illustrates the
automatic data construction pipeline, including image source col-
lection, image pairing, and our two-stage annotation using single-
image captioning and modification text generation.
Image sources. We use two publicly available fashion datasets:
Fashion200k [14] and DeepFashion-MultiModal [20], both orig-
inally crawled from online shopping websites. The Fashion200k
dataset comprises approximately 200k images across five categories:
dresses, jackets, pants, skirts, and tops. The images are accompa-
nied by product descriptions, which, while useful, tend to be noisy.
DeepFashion-MultiModal [20] is a refined version of the DeepFash-
ion [32] dataset. It consists of 44,096 high-resolution model-worn
images of clothing, each annotated with automatically-parsed at-
tributes from product descriptions and manually-labeled shape and
texture information. Note that images in both datasets are distinct
from those used in the downstream datasets, ensuring there is no
information leakage.
Image pairing. From this large image pool, we extract pairs of
images to create a list of reference and target image pairs for the
CIR task. We constrain the visual similarity of the image pairs: if
two images are too different, the modification text will focus on
describing the target image, ignoring the reference image. On the
other hand, if two images are overly similar, it can be challenging for
automatic systems to describe their subtle differences. To address
this similarity range, we first filter out images according to the
initial datasets’ file structure, to exclude pairings of different views
of the same item, thus enhancing the diversity of the CIR triplets.
Next, we encode each image using the CLIP image encoder [37],
and compute its cosine similarity with all other images in the same
image source and category. Inspired by [33], we randomly select one
image among the top-20 most similar images to form the image pair.

Table 2: Quality evaluation of FashionIQ and our FACap
dataset. We randomly sample 216 triplets across categories for
each dataset and ask three annotators to measure data quality from
three aspects with scale from 1 (worst) to 5 (best).

Faithfulness Details Saliency

FashionIQ [52] 4.48 ± 0.64 3.03 ± 0.67 3.60 ± 0.69
FACap 4.40 ± 0.60 4.09 ± 0.64 4.29 ± 0.60

This randomized selection enhances dataset diversity, preventing
consistent pairing with the most similar images.
Two-stage annotationWe aim to utilize large vision and language
foundation models [7, 25, 26] to automatically annotate image pairs.
However, currently, only a few VLMs are capable of accurately
comparing two images in detail, and they often struggle to directly
generate accurate modification texts from two images due to the
scarcity of multi-image training data, as observed in our initial ex-
periments. Therefore, we propose a two-stage approach to generate
more accurate and detailed image pair annotations.

In the first stage, we use the open-source VLMmodel InternVL [7],
due to its good performance and modest computational require-
ments. The maximum token length for generation is set to 128,
allowing the creation of long captions that capture as many fine-
grained details as possible. These detailed captions are key in en-
hancing the precision of the modification texts generated in the
second stage. To improve captioning accuracy and mitigate hallu-
cinations which could introduce wrong elements in the caption,
we prompt InternVL with the image category and available prod-
uct descriptions and attributes from the image source. Although
these additional inputs may be noisy, they often provide valuable
context. Processing the entire dataset takes about 41 GPU hours
on Nvidia A100 GPUs. In the second stage, we use the proprietary
LLM GPT-4o mini [1] 1 to synthesize modification texts, benefitting
from GPT4’s strong capabilities in text reasoning. To guide the
model in generating short and concise modification texts, we use
clear instructions along with two in-context examples. This ensures
that the LLM focuses on the most significant changes between the
reference and target images. Figure 3 shows examples from FACap
across different fashion categories.

1https://platform.openai.com/docs/models/gpt-4o-mini#gpt-4o-mini

https://platform.openai.com/docs/models/gpt-4o-mini#gpt-4o-mini
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3.2 Quality evaluation
Given the large size of FACap, manually and exhaustively evaluat-
ing its quality is challenging. Therefore, we randomly sample 216
triplets from the FashionIQ and the same number from the FACap
dataset to assess the quality of their modification texts. We evaluate
the modification texts based on three key aspects:

• Faithfulness: Whether the modification text accurately de-
scribes the changes between the reference image and target
images. Note that this criteria indirectly evaluates the pres-
ence of hallucinations generated by the VLM and LLM, as
they lead to inaccurate differences.

• Details: Whether the modification text captures multiple
elements present in the images.

• Saliency: Whether the modification text focuses on unique
elements, reducing the number of possible false-positive
target images. A vague text could have a high faithfulness
value, but would score poorly on saliency.

Each criterion is manually scored by three annotators on a scale
from 1 (worst) to 5 (best) for each randomly sampled triplet. The
results are presented in Table 2. Notably, compared to the manually
annotated FashionIQ dataset for CIR, our automatically constructed
dataset exhibits even higher quality. The similar faithfulness values
indicate that our pipeline’s caption errors are comparable to the
rate of mistakes made by human annotators, while improving the
amount of details and the relevance of the texts for retrieval, as
shown by the details and saliency values. This demonstrates the
effectiveness of our annotation pipeline.

3.3 Dataset Statistics
Table 1 compares our FACap dataset with existing caption datasets
in both the general and fashion domains. FACap offers two key
advantages over existing CIR fashion datasets. First, it significantly
expands the dataset’s size in the fashion domain with minimal
additional time and cost. The scale of FACap is closer to that of
general-domain image-text datasets like MSCOCO [29], and we
exclude other web sources to ensure our dataset can be publicly
available. Second, FACap includes more accurate and detailed cap-
tions than existing datasets, as evidenced by our quality evaluation
and average caption length. This can benefit fashion CIR tasks for
fine-grained understanding of image-text alignment, particularly
for fashion-related features and modifications, as illustrated in our
qualitative results in figure 6.

4 The FashionBLIP-2 Model
4.1 Overall Framework
Given a reference image 𝐼𝑟 and modification text𝑇 , the objective of
CIR is to retrieve the correct target image 𝐼𝑡 from an image database
D. The retrieved image 𝐼𝑡 should accurately reflect the specified
modifications applied to 𝐼𝑟 .

Figure 4 provides an overview of our FashionBLIP-2model for the
CIR task, which consists of three key modules: an image encoder for
extracting image features, a light-weight Q-Former for compressing
image features and performingmultimodal fusionwith text features,
and a matching module for computing similarity between the query
and the target image. The image encoder and Q-Former are adapted

from the pretrained BLIP-2 model [25], to which we refer readers
for a more detailed explanation.

Given 𝐼𝑟 , the image encoder first extracts a feature map 𝑓𝑟 ∈
Rℎ×𝑤×𝑑𝐼 , with ℎ,𝑤 the height and width of the encoded feature
map and𝑑𝐼 the feature dimensionality. Then, the Q-Former employs
a set of learnable queries to distill 𝑓𝑟 into a compact set of embed-
dings 𝑥𝑞 ∈ R𝑛𝑞×𝑑𝑞 together with guidance from the modification
text 𝑇 , where 𝑛𝑞 ≪ ℎ ×𝑤 . Similarly, each candidate image 𝐼𝑐 ∈ D
is sequentially processed by the image encoder and Q-Former but
without any textual input, producing a corresponding set of embed-
dings 𝑥𝑐 ∈ R𝑛𝑞×𝑑𝑞 per image. Finally, the matching module takes
the multimodal query embeddings 𝑥𝑞 and the candidate image em-
bedding 𝑥𝑐 as inputs, computing a similarity score 𝑠𝑞𝑐 between the
query and the candidate image. During inference, the similarity be-
tween the multimodal query and all candidate images is computed.
The candidate images are then ranked in descending order based
on their similarity scores, resulting in the final retrieval list.

4.2 Adapter in Image Encoder
The BLIP-2 model [25] is initially trained on large-scale open-
domain datasets, potentially reducing its effectiveness at capturing
fine-grained visual details crucial to the fashion domain, such as
features related to sleeve length or specific collar types. A straight-
forward approach to address this limitation is to fine-tune the
BLIP-2 model alongside the CIR modules, to better adapt it to the
fashion domain, but this may lead to high computational costs and
catastrophic forgetting.

To overcome this challenge, we draw inspiration from [44] and in-
troduce lightweight adaptermodules into each transformer layer [50]
of the image encoder. Instead of fine-tuning the entire BLIP-2 back-
bone, we freeze the pretrained weights in the image encoder and
train only the newly introduced adapter modules along with the
lightweight Q-Former. As illustrated in Figure 4, each adapter mod-
ule comprises a downsampling layer, a non-linear operation, and
an upsampling layer, with a residual link. Given an input 𝑥 ∈ R𝑐 :

Adapter(𝑥 ) = 𝑥 +𝑊𝑢 (𝜎(𝑊𝑑𝑥 )) (1)

where𝑊𝑑 ∈ R𝑐𝑏×𝑐 ,𝑊𝑢 ∈ R𝑐×𝑐𝑏 are trainable parameters with
𝑐𝑏 ≪ 𝑐 , and 𝜎 denotes the GELU function [17].

This bottleneck architecture introduces a relatively small amount
of additional parameters to the image encoder, ensuring a light-
weight adaptation. Furthermore, the residual connection facilitates
efficient gradient flow and helps preserve the original pretrained
features, allowing the model to retain general-domain knowledge
while learning fashion-specific details.

4.3 Multi-head Query-Candidate Matching
Previous works [3, 34] average the token embeddings 𝑥𝑞 and 𝑥𝑐
over the token dimension to obtain a single global vector for the
query and each candidate image. However, this approach often
suffers from the loss of fine-grained details crucial for retrieval.

To address this, we propose a multi-head query-candidate match-
ingmethod based on a dual-level mixing operation like [46] to better
capture fine-grained information. First, we use token mixing over
the input tokens for 𝑥𝑞 ∈ R𝑛𝑞×𝑑𝑞 , formulated as:

𝑥𝑡𝑚𝑞 =𝑊𝑡𝑚 × 𝑥𝑞 (2)
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Figure 4: Overview of the FashionBLIP-2 model. Left: The input images are encoded using a pretrained image encoder with adapter
modules, and further processed by a Q-Former module. The similarity between the two obtained representations is computed using multi-head
query-candidate matching module. Right: Details of the matching module. The number of tokens and token dimensionality is reduced by
token mixing and channel mixing respectively. The final similarity score is the sum of the cosine similarity for each paired vector.

where𝑊𝑡𝑚 ∈ R𝑛𝑡×𝑛𝑞 is a trainable parameter. Here, 𝑛𝑡 < 𝑛𝑞 to
reduce the redundancy across embeddings in the initial representa-
tion 𝑥𝑞 , while retaining multiple vectors to capture multiple aspects
of the inputs. We then perform channel mixing for each vector to
project 𝑥𝑡𝑚𝑞 into a lower-dimensional space:

𝑥𝑐𝑚𝑞 = 𝑥𝑞 ×𝑊𝑐𝑚 (3)

where𝑊𝑐𝑚 ∈ R𝑑𝑞×𝑑𝑐 with 𝑑𝑐 < 𝑑𝑞 . In order to encourage project-
ing 𝑥𝑞 and 𝑥𝑐 into a common low-dimensional embedding space,
we use the same parameters𝑊𝑡𝑚 =𝑊𝑐𝑚 to process 𝑥𝑞 and 𝑥𝑐 .

Each row vector in 𝑥𝑐𝑚𝑞 and 𝑥𝑐𝑚𝑐 is viewed as one head for match-
ing. The final similarity is the sum of the cosine similarities for each
head as follows:

𝑠𝑞𝑐 = sim
(
𝑥𝑐𝑚𝑞 , 𝑥𝑐𝑚𝑐

)
=

𝑛𝑡∑︁
𝑖=1

𝑥𝑐𝑚
𝑞,𝑖

· 𝑥𝑐𝑚
𝑐,𝑖

∥𝑥𝑐𝑚
𝑞,𝑖

∥2 · ∥𝑥𝑐𝑚𝑐,𝑖 ∥2
(4)

4.4 Training
We train the FashionBLIP-2 model in two stages.
Stage 1: Training on FACap. The first stage aims to fine-tune a
general-domain model to the fashion domain, to learn fine-grained
visual and text representations. Since FACap contains both CIR
triplets and image-caption pairs, we use two tasks in stage 1 training:
the primary CIR task and an auxiliary Composed Text Retrieval
(CTR) task.

For the CIR task, we employ the widely-used contrastive loss:

LCIR = − 1
𝑛

𝑛∑︁
𝑖=1

log
©«

exp(𝑥𝑖𝑦𝑖 )
exp(𝑥𝑖𝑦𝑖 ) +

∑
�̂�∈N𝑖

exp(𝑥𝑖𝑦)
ª®®¬ (5)

with (𝑥𝑖 , 𝑦𝑖 ) a positive pair, and N𝑖 the set of negative pairs. Here,
the negative pairs correspond to the reference image 𝑥𝑖 and any
target image other than 𝑦𝑖 in the batch.

The CTR task retrieves a target text corresponding to the target
image from a text pool, rather than the target image as in CIR. This
auxiliary task helps the model align the fused query embedding
more effectively with the textual representation, complementing
its alignment with the image representation in CIR task. The con-
trastive loss used for CTR task, LCTR, is defined as in Eq 5.

We fine-tune the whole FashionBLIP-2 except for the original
image encoder, using the combined loss function LCIR + LCTR.
Stage 2: Fine-tuning on downstream Fashion CIR dataset.
The second stage fine-tunes the FashionBLIP-2 model on the down-
stream dataset to further improve its performance. However, since
FashionIQ does not contain image-caption pairs, we train the model
exclusively with LCIR. Additionally, we freeze the image encoder
and its adapter modules to preserve the fashion-domain knowledge
learnt during the first stage of training.

5 Experiment
5.1 Experimental setup
Datasets. We use the FashionIQ dataset [52] for evaluation, which
is the most widely used Fashion CIR dataset. With 18,000 training
triplets and 6,016 validation triplets, it covers three categories: Dress,
Shirt, and Toptee. Each reference and target image pair contains
two manually annotated modification texts. Following previous
works [5, 10, 34, 35, 55, 56], we concatenate the two annotated texts
with an “and” word to form a single modification text, and evaluate
the models on the validation split.

However, since the annotations in FashionIQ are noisy as shown
in Figure 1 and Table 2, we enhance its quality by applying our
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Table 3: Results on the FashionIQ validation split for composed image retrieval, under two settings: with andwithout fine-tuning
the model on FashionIQ. Best and second-best results in each setting are highlighted in bold and underlined, respectively.

Setting Model Dresses Shirts Tops&tees Averages
R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50 Avg.

Without
fine-tuning

Pic2Word [40] 20.00 40.20 26.20 43.60 27.90 47.40 24.70 43.70 34.22
SEARLE (ViT-L/14) [4] 20.48 43.13 26.89 45.58 29.32 49.97 25.56 46.23 35.90
Context-I2W [45] 23.1 45.3 29.7 48.6 30.6 52.9 27.8 48.9 39.37
FTI4CIR [28] 24.39 47.84 31.35 50.59 32.43 54.21 20.39 50.88 40.14
LDRE (ViT-G/14) [54] 26.11 51.12 35.94 58.58 35.42 56.67 32.49 55.46 43.97

FashionBLIP-2 (ours) 32.52 53.25 34.79 52.40 36.66 58.13 34.66 54.59 44.63

With
fine-tuning

CLIP4CIR [5] 33.81 59.40 39.99 60.45 41.41 65.37 38.32 61.74 50.03
BLIP4CIR+Bi [34] 42.09 67.33 41.76 64.28 46.61 70.32 43.49 67.31 55.40
BLIP2-Cir [19] 41.57 66.02 46.86 66.00 49.44 72.25 45.96 68.09 57.02
TG-CIR [51] 45.22 69.66 52.60 72.52 56.14 77.10 51.32 73.09 58.05
FAME-ViL [16] 42.19 67.38 47.64 68.79 50.69 73.07 46.84 69.75 58.29
Re-ranking [35] 48.14 71.43 50.15 71.25 55.23 76.80 51.17 73.13 62.15
SPRC [3] 49.18 72.43 55.64 73.89 59.35 78.58 54.92 74.97 64.85
UniFashion [55] 53.72 73.66 61.25 76.67 61.84 80.46 58.93 76.93 67.93

FashionBLIP-2 (ours) 51.41 73.53 57.02 75.32 58.95 79.60 55.79 76.15 65.97

automatic annotation process to the images from the Fashion IQ
validation split. We create a triplet for each unique image in the
validation split and generate a total of 15,536 CIR triplets, which
we name enhFashionIQ, for fine-grained CIR evaluation.
Evaluation metrics.We use Recall@𝑘 (with 𝑘 ∈ {10; 50} similarly
to previous works) as the main metric. It computes the percentage
of target images that appear in the top-𝑘 retrieved images list. The
recalls are computed for each category: dress, shirt, and toptee for
FashionIQ and enhFashionIQ. We also report the average recall.
Experiment settings.We evaluate models under two settings:

• without fine-tuning setting: the model is only trained on
our FACap dataset and then evaluated on downstream CIR
datasets. This setting evaluates the generalization capacity
of the model on a previously unseen fashion dataset, and its
performance is compared to zero-shot methods [4, 21, 28, 40,
45, 54].

• fine-tuning setting: the model is fine-tuned on FashionIQ,
and evaluated on FashionIQ and enhFashionIQ.

Implementation details We use the ViT-G version of the pre-
trained BLIP-2 [25] model. For the adapter module in image en-
coder, we use a downsampling factor of 16. The Q-Former module is
parametrized to take textual inputs of 128 tokens and 𝑛𝑞 = 32 query
tokens, and outputs 32 token embeddings with dimensionality of
𝑑𝑞 = 768. The token mixing layer in our multi-head query-target
matching reduces the 32 tokens to 𝑛𝑡 = 12 tokens and channel di-
mension from 768 to 𝑑𝑐 = 256. We run our experiments on NVIDIA
H100 GPUs with batch size of 512 and AdamW optimizer.

5.2 Comparison with state-of-the-art methods
Table 3 presents the evaluation results on FashionIQ under the
two settings - without and with fine-tuning. In the upper block,
we compare the FashionBLIP-2 model, trained only on our FACap

dataset, with zero-shot methods [4, 28, 40, 45, 54] to compare their
generalization capacity on fashion data. Our model achieves an
improvement over the state-of-the-art method LDRE [28], which
uses pre-trained LLMs. The average gain is 0.66 absolute points
with 2.17 in R@10, highlighting its ability to retrieve relevant im-
ages on a previously unseen fashion dataset. The most pronounced
improvement is observed in the dress category, known for its high
diversity in descriptions such as their length, pattern, neckline,
and way of wearing, further demonstrating the effectiveness of our
proposed dataset and approach.

The bottom section of Table 3 shows the comparison between
our FashionBLIP-2 and existing methods [3, 5, 16, 19, 34, 35, 51, 55]
fine-tuned on the FashionIQ dataset. Our FashionBLIP-2 achieves
the second best results on average, only under-performing UniFash-
ion [55] which utilizes more image-caption pairs —about 280k pairs
—and generation tasks in training rather than CIR triplets. As our
FACap dataset and method are complementary to UniFashion, we
will leave it to future work.

5.3 Ablation study
Pretraining on the FACap dataset. In Table 4, we evaluate the
contribution of the proposed FACap dataset using our FashionBLIP-
2 model, SPRC [3] and UniFashion [55]. The evaluation is con-
ducted on both FashionIQ and our enhFashionIQ, containing more
fine-grained annotations. First, almost all models benefit from pre-
training on FACap, improving performance on the two evaluation
datasets. Second, our FACap dataset provides greater benefits to the
FashionBLIP-2 model. This advantage is attributed to our model’s
multi-head matching mechanism, which effectively leverages the
fine-grained details in FACap, whereas SPRC struggles to utilize
such detailed information due to its reliance on global embeddings.
Finally, FashionBLIP-2 achieves a better performance than SPRC
on the FashionIQ split, and it demonstrates significantly higher
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Table 4: Impact of FACap pretraining on SPRC [3], UniFash-
ion [55] (code reproduction) and our method. The averaged
Recall is reported for FashionIQ and enhFashionIQ validation splits.

Model Pretrain
on FACap

Fine-tune
on FIQ FIQ enhFIQ

SPRC [3] ✗ ✓ 64.85 79.59
✓ ✓ 64.87 80.29

UniFashion [55]∗ ✗ ✓ 65.34 81.97
✓ ✓ 64.51 87.30

FashionBLIP-2
(Ours)

✗ ✓ 64.46 80.32
✓ ✓ 65.97 87.93

* Results obtained using UniFashion’s released code

Table 5: Ablation study of different components in
FashionBLIP-2 model. The averaged Recall is reported for Fash-
ionIQ and enhFashionIQ validation splits under two settings. The
acronym “MH" denotes the proposed multi-head matching.

Training
tasks Adapter Matching no fine-tuning w/ fine-tuning

FIQ enhFIQ FIQ enhFIQ

CIR ✗ Global 41.04 87.81 64.36 86.42
CIR ✓ Global 42.62 88.20 64.38 86.75
CIR ✓ MH 43.31 89.14 65.97 87.93

CIR+CTR ✓ MH 44.63 89.45 65.62 86.93

improvements on enhFashionIQ under the same training configu-
ration. This highlights the superior ability of our model to handle
fine-grained fashion retrieval tasks. In addition, we observe that
fine-tuning our model on FashionIQ does not degrade much its
performance on enhFashionIQ compared to SPRC. This indicates
that our method is more robust to noisy datasets, without losing
its fine-grained performance.
FashionBLIP-2 components. Table 5 analyzes the individual con-
tributions of each component in our FashionBLIP-2 model. The first
row serves as the baseline, representing a model built on top of
BLIP-2. In the second row, we specialize the image encoder with
adapter modules, improving performance across both datasets and
evaluation settings. The third row incorporates the proposed multi-
head query-candidate matching mechanism. This boosts retrieval
performance by enabling the model to capture and compare finer
details between queries and candidates. Finally, the fourth row inte-
grates the auxiliary CTR task during training on the FACap dataset.
While it improves results in the setting without fine-tuning on
FashionIQ, it decreases performance when fine-tuned on FashionIQ.
We hypothesize that the CTR task may introduce a bias towards
detailed textual descriptions, which might hinder adaptation to
noisier datasets like FashionIQ.
Size of the training data. To investigate the impact of data quan-
tity, we train FashionBLIP-2 on progressively larger subsets of
FACap and evaluate the resulting models on FashionIQ and en-
hFashionIQ. As shown in Figure 5, the performance of our model
improves with the increasing size of the training dataset across both

Figure 5: Results on FashionIQ dataset without fine-tuning
using different sizes of the FACap dataset.

evaluation benchmarks. This highlights the critical role of having a
large volume of diverse image-text pairs to effectively learn fine-
grained multimodal representations. However, the performance
gain from training on 50% to 100% of the dataset is relatively small:
while data quantity is important, further improvements may require
focusing on data quality and diversity rather than sheer volume.

5.4 Qualitative Results
Figure 6 presents qualitative results of FashionBLIP-2 on the Fashion
IQ and enhFashionIQ validation data. The first two rows show that
whether the modification text is precise (enhFashionIQ) or not
(Fashion IQ), our model is able to combine it with characteristics
of the reference images (for example clothing length and color).
The third row presents a failure case of our model, revealing the
difficulty of handling false negative examples: the correct target
image is badly ranked, but all the top-3 retrieved images respect
the given modification text and the information from the reference
image (color and sleeves).

6 Conclusion
We have proposed two enhancements to tackle shortcomings of CIR
in the fashion domain. Firstly, we designed an automatic pipeline
to build a large-scale high-quality CIR dataset from a large list of
images with noisy captions. Leveraging the strengths of a VLM
and a LLM, this pairing and annotation method provides accu-
rate modification texts, while adding relevant fashion details and
focusing on salient changes. This method has allowed us to con-
struct FACap, a higher quality dataset for fashion CIR. Secondly,
we have introduced FashionBLIP-2, a method combining BLIP-2’s
general-domain comprehensive strength with an adapter module
to adjust it to the fashion domain, and a new multi-head query-
candidate matching mechanism to focus on fine-grained details and
benefit from FACap high-quality captioning. Experiments show
that FashionBLIP-2 trained on FACap outperforms state-of-the-art
methods without fine-tuning on the downstream dataset. It also
reaches competitive performance after fine-tuning on FashionIQ,
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Figure 6: Qualitative results of FashionBLIP-2 on Fashion IQ (rows 1 and 3) and enhFashionIQ (row 2). The rank of the ground-truth
image (framed in green) among the retrieved results is specified on the right.

making it well-suited for fast adaptation in the fashion domain,
excelling in fine-grained retrieval tasks while remaining robust to
vague modification texts.
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