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Abstract
Sequential Recommendation (SeqRec) aims to predict the next item
by capturing sequential patterns from users’ historical interactions,
playing a crucial role in many real-world recommender systems.
However, existing approaches predominantly adopt a direct for-
ward computation paradigm, where the final hidden state of the
sequence encoder serves as the user representation. We argue that
this inference paradigm, due to its limited computational depth,
struggles to model the complex evolving nature of user preferences
and lacks a nuanced understanding of long-tail items, leading to
suboptimal performance. To address this issue, we proposeReaRec,
the first inference-time computing framework for recommender
systems, which enhances user representations through implicit
multi-step reasoning. Specifically, ReaRec autoregressively feeds
the sequence’s last hidden state into the sequential recommender
while incorporating special reasoning position embeddings to de-
couple the original item encoding space from the multi-step reason-
ing space. Moreover, we introduce two lightweight reasoning-based
learning methods, Ensemble Reasoning Learning (ERL) and Pro-
gressive Reasoning Learning (PRL), to further effectively exploit
ReaRec’s reasoning potential. Extensive experiments on five public
real-world datasets and different SeqRec architectures demonstrate
the generality and effectiveness of our proposed ReaRec. Remark-
ably, post-hoc analyses reveal that ReaRec significantly elevates the
performance ceiling of multiple sequential recommendation back-
bones by approximately 30%-50%. Thus, we believe this work can
open a new and promising avenue for future research in inference-
time computing for sequential recommendation.
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1 Introduction
Recommender systems (RS) have become ubiquitous in modern
daily life, powering personalized services across domains such as
e-commerce platforms [23, 42], music recommendation services [3,
41], and video streaming applications [14, 40]. To accurately capture
a user’s next interaction intent, sequential recommendation algo-
rithms are designed to analyze historical interactions to mine under-
lying sequential patterns andmodel latent user preferences [1, 5, 32].
Current mainstream sequential recommendation models, such as
SASRec [13] and UniSRec [10], adopt a Transformer-based archi-
tecture, leveraging their power attention mechanisms to adaptively
weight past interacted items and use the final position’s encoded
output as the user representation, as illustrated in Fig. 1(a). How-
ever, we argue this prevailing direct forward inference paradigm
may lack nuanced comprehension of dynamic user preferences
and evolving interest patterns, leading to suboptimal modeling for
long-tail user interest and unpopular items. Despite their efficiency,
we argue that these direct inference paradigms often fall short in
modeling long-tail users with fewer interactions and less popular
items—scenarios that inherently demand more nuanced reasoning
and deeper representation learning.

Recently, many studies from the natural language processing
(NLP) community have demonstrated that Chain-of-Thought (CoT)
during inference can significantly improve the performance of Large
Language Models (LLMs) on complex tasks like mathematics and
coding [9, 22, 27, 33]. By allowing the model to perform multi-step
deliberation before generating a final output, CoT-based reasoning
enhances the model’s capacity to handle complex problems beyond
what direct inference allows. Furthermore, Feng et al. [6] theoreti-
cally uncover that the emergent thinking capabilities are attributed
to the increased computational depth introduced by CoT-based
reasoning, which allows models to overcome the expressivity limi-
tations of direct answer even with constrained parameter sizes.

Motivated by these insights, we explore whether a similar think-
before-action paradigm can benefit sequential recommendation,
especially for challenging cases such as long-tail users and items.
We propose ReaRec, a novel reasoning-enhanced framework that
enables SeqRec models to engage in implicit multi-step reasoning

https://github.com/TangJiakai/ReaRec
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Illustration of traditional direct inference (i.e.,
reasoning-free) and our proposed multi-step reasoning-
enhanced sequential recommendation framework.

during inference. As shown in Fig. 1(b), ReaRec performs autore-
gressive reasoning over latent representations before producing
the final user embedding, thereby deepening feature crossing and
improving representational richness. To prevent the recommender
from confusing the sequence encoding stage and reasoning stage,
we design a specialized positional encoding scheme to explicitly
distinguish item representations from reasoning inputs. However,
unlike NLP tasks, where explicit reasoning chains naturally pro-
vide process supervision to guide model optimization [16, 18, 21],
implicit reasoning in sequential recommendation lacks effective in-
termediate signals. This absence of stepwise guidance could lead to
unpredicted reasoning degradation issues, causing the recommender
to either replicate prior reasoning patterns or progressively drift
away from accurately modeling the user’s true interest distribution.
Consequently, this may significantly impair the robustness and
generalization capability of the recommendation model.

To address the aforementioned challenges, we propose two sim-
ple yet effective reasoning learning strategies, Ensemble Reason-
ing Learning (ERL) and Progressive Reasoning Learning (PRL),
to fully exploit the reasoning power of our ReaRec framework.
For the ERL method, it leverages the idea of ensemble learning to
construct multi-order user representations to comprehensively cap-
ture latent interest distributions from diverse perspectives. Specifi-
cally, we introduce multi-step supervised optimization to alleviate
the optimization difficulty in deep reasoning processes. Further-
more, to prevent reasoning-pattern degradation, we incorporate a
representation diversity regularizer to mitigate output homogeneity
in multi-step reasoning. For the PRL method, inspired by curricu-
lum learning, we design a progressive temperature annealing mech-
anism to guide the model from initial exploitation to the gradual
refinement of modeled sequential patterns. This approach enables
the model to progressively learn the user’s true interest distribu-
tions. Moreover, we also propose a reasoning-aware contrastive
learning objective to enhance the reasoning robustness ability by
simulating the error self-correction process, thus achieving better
generalization performance.
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Figure 2: Empirical performance gains and potential upper
bound analysis of optimal reasoning steps (K = 2) on Yelp
dataset across different SeqRec models.

Our extensive experiments on five benchmark datasets demon-
strate the effectiveness of the proposed ReaRec framework. In par-
ticular, the ReaRec achieves an average performance gain of 7.49%
across all metrics while incurring only 3.51% additional inference la-
tency (cf. Sec. 4.2 and Sec. 4.3.3). Moreover, further analysis reveals
several interesting empirical findings: (1) Enhancing modeling
capability for underrepresented groups. The multi-step rea-
soning process steadily enhances the recommendation quality of
users with sparse interactions and long-tail items. (2) Remarkable
performance ceiling breakthrough. Post-hoc optimal reason-
ing step analysis shows that our method elevates the performance
ceilings for different backbone models by approximately 30%-50%
(as shown in Fig. 2), highlighting its promising capability. We are
optimistic that our proposed RecRec will open new avenues for
exploring inference-time scaling for recommender systems.

Our main contributions are summarized as follows:

• We propose ReaRec, a novel reasoning-enhanced sequential
recommendation framework that empowers SeqRec models to
perform implicit multi-step reasoning during inference. To our
knowledge, this is the first work to systematically explore inference-
time computational power within recommender systems.

• We introduce two reasoning learning strategies, ERL and PRL,
which leverage the ideas of ensemble learning and curriculum
learning to efficiently optimize the implicit reasoning process
and alleviate reasoning degradation issues.

• Extensive experiments on five real-world datasets and various
representative SeqRec models validate the generality and effec-
tiveness of ReaRec. Notably, our detailed post-hoc analysis re-
veals that ReaRec can significantly raise the performance ceiling,
achieving significant improvements by up to 50%.
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• We identify some challenges faced by current reasoning-enhanced
recommendation methods and the future opportunities, stimulat-
ing a new research direction at the intersection of inference-time
computing and sequential recommendation.

2 Preliminary
In this section, we formally define the sequential recommendation
task and introduce the typical sequential recommendation pipeline.

2.1 Problem Definition
Formally, letU andV denote the sets of users and items, respec-
tively, with 𝑀 = |U| and 𝑁 = |V| representing the number of
users and items. For each user 𝑢 ∈ U, we define their chronological
interaction sequence asS𝑢 = [𝑣𝑢1 , 𝑣

𝑢
2 , . . . , 𝑣

𝑢
𝑛𝑢

], where𝑛𝑢 represents
the length of the interaction sequence S𝑢 . Each item 𝑣 ∈ V has
a unique ID and a set of textual attributes (such as title, product
feature, and other side information). These attributes are stored
in a dictionary D𝑣 = {𝑘1 : 𝑎1, 𝑘2 : 𝑎2, . . . , 𝑘𝑚 : 𝑎𝑚}, where 𝑘𝑖 and
𝑎𝑖 represent the key and value of the 𝑖-th attribute, respectively.
Here, 𝑚 refers to the total number of attributes associated with
item 𝑣 . The overall text description for item 𝑣 is constructed by
concatenating its attributes in the format of an unordered list: “The
item information is as follows: \n- 𝑘1:𝑎1 \n- 𝑘2:𝑎2 \n . . .\n- 𝑘𝑚 :𝑎𝑚”.

The goal of sequential recommendation is to predict the next item
a user will interact with, based on historical interaction data. Given
the interaction sequences for all users S = {S𝑢1 ,S𝑢2 , . . . ,S𝑢𝑀 },
whereS𝑢𝑖 represents the interaction sequence of user𝑢𝑖 , andS𝑢𝑖1:𝑡 =
[𝑣𝑢1 , 𝑣

𝑢
2 , . . . , 𝑣

𝑢
𝑡 ] denotes the first 𝑡 interaction records of user 𝑢𝑖 .

Given the item embedding matrix E ∈ R𝑁×𝑑 , where 𝑑 is the dimen-
sion of the item embedding, the sub-sequence S𝑢𝑖1:𝑡 is encoded to ob-
tain the corresponding item embeddings E𝑢𝑖1:𝑡 = [e𝑣𝑢1 , e𝑣𝑢2 , . . . , e𝑣𝑢𝑡 ].
The recommender’s learning objective is to maximize the prediction
probability of the next item 𝑣

𝑢𝑖
𝑡+1 based on the historical interaction

data, which is formally defined as

max
Θ

∑︁
𝑢∈U

𝑛𝑢−1∑︁
𝑡=1

𝑃 (𝑣𝑢𝑡+1 |S
𝑢
1:𝑡 ;Θ), (1)

where Θ denotes the parameters of the recommendation model.

2.2 Sequential Recommendation Pipeline
In a typical sequential recommendation pipeline, users’ historical
interactions are first encoded into item embeddings. These item
embeddings are then fed into a sequential model (e.g., transformer-
based models) to produce a sequence representation, typically using
the output from the final position (as illustrated in Fig. 1(a)). Finally,
this sequence representation is used to calculate similarity scores
with candidate item embeddings (such as dot product [39, 40] or
cosine similarity[15, 35]) to predict the probability of the user’s
interaction with the next item.

In general, mainstream sequential recommendation methods can
be broadly categorized into two main types, distinguished primarily
by their approaches to encoding item representations:

(1) ID-based Encoding: The ID-based approach uses one-hot en-
coding for the item’s discrete representation and retrieves the item’s
embedding from the embedding matrix. Representative sequential

recommendation methods employing this encoding approach in-
clude SASRec [13], BERT4Rec[24], etc.

(2) Text-based Encoding: The text-based item representation
usually involves feeding the item’s string-formatted description
into a pre-trained language model (such as BERT [19], LLaMA [8],
etc.), and then utilizing average pooling or extracting hidden state
from special positions (e.g., [CLS] or the last position) as the item’s
encoding [7, 15, 17]. Popular recommendation models utilizing
text-based encoding include UniSRec [10], MoRec [38], etc.

In this paper, since the proposed reasoning framework is model-
agnostic, we omit the details of how item representations are ob-
tained and consistently use e𝑣 ∈ E to denote item 𝑣 ’ representations.

3 Methodology
In this section, we introduce ReaRec, a novel, simple, and highly
scalable recommendation framework designed to unleash a model’s
latent sequential reasoning capability. Instead of the traditional
direct recommendation without reasoning, our approach leverages
multi-step implicit reasoning to refine user representations, fully
exploiting the computational potential of sequential models to ap-
proximate the true distribution of user interests.

In what follows, we first introduce ReaRec, our foundational
framework for inference-time computation extension (Sec. 3.1).
We then propose two lightweight methods—Ensemble Reasoning
Learning (Sec. 3.2) and Progressive Reasoning Learning (Sec. 3.3)—
to address the aforementioned challenges. The overall framework
of ReaRec is illustrated in Fig. 3.

3.1 ReaRec Backbone
Our proposed ReaRec is model-agnostic and can be easily integrated
into a variety of sequential recommenders. To better explain our
work, we illustrate our framework using the widely adopted trans-
former [30] architecture in sequential recommendation tasks as an
example, demonstrating how we extend computational capacity
during inference with our backbone.

3.1.1 Self-attention Sequence Encoding. Given a user’s histor-
ical sequence S𝑢 = [𝑣𝑢1 , 𝑣

𝑢
2 , . . . , 𝑣

𝑢
𝑛 ], we can obtain the item embed-

dings of these 𝑛 items by looking up the embedding matrix E. To
fully leverage sequential information, we inject Absolute Position
Embeddings into the item embeddings at the input layer. Specifi-
cally, for a given item 𝑣 at position 𝑖 , the input representation is
constructed by summing its item embedding e𝑣 and the correspond-
ing positional embedding p𝐼

𝑖
:

h0𝑖 = e𝑣 + p𝐼𝑖 , (2)

where p𝐼
𝑖
is obtained by looking up the learnable positional em-

bedding matrix P𝐼 ∈ R𝑛×𝑑 . Next, we develop the item sequence
encoder 𝑓 (·) by stacking multiple multi-head self-attention lay-
ers (denoted as𝑀𝐻𝑆𝐴(·)) and point-wise feed-forward networks
(denoted as 𝐹𝐹𝑁 (·)) to capture the complicated sequence features:

H𝑙 = 𝑓 (H𝑙−1) = 𝐹𝐹𝑁 (𝑀𝐻𝑆𝐴(H𝑙−1)), (3)

where H𝑙 = [h𝑙1, h
𝑙
2, . . . , h

𝑙
𝑛] denotes the concatenated hidden states

at the 𝑙-th layer. In the conventional paradigm, the output at the
last position of the final layer is directly used as the final user
representation, i.e., h𝑢 = H𝐿 [−1], where 𝐿 is the number of layers.
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Figure 3: Overview of the proposed ReaRec framework and
two reasoning-enhanced learning strategies: Ensemble Rea-
soning Learning and Progressive Reasoning Learning.

3.1.2 Extended Inference-Time Reasoning. Existing sequen-
tial recommenders that rely only on non-reasoning forward infer-
ence struggle to directly model item sequence patterns, fundamen-
tally constrained by their limited computation power to capture
nuanced user interest. To address this problem, we propose implicit
reasoning mechanism to augment the computational capacity,
enabling the enhanced refinement of user interest modeling to more
precisely approximate real preference distributions.

Specifically, rather than directly using H𝐿 [−1] as the user rep-
resentation, we autoregressively feed the hidden state of the last
position back into the encoder for 𝑲-pass forward computa-
tions. By effectively increasing inference-time computation, this
approach further unleashes the model’s potential to capture in-
tricate sequential dependencies. However, this inference strategy
deviates from the original objective of sequential recommendation
models, namely next-item prediction. To bridge this task gap, we
introduce the Reasoning Position Embedding (RPE), denoted as
P𝑅 ∈ R𝐾×𝑑 , to distinguish between the sequence encoding phase
and the reasoning phase. At the 𝑘-th reasoning step, the model’s
input embedding is defined as H0 ∈ R(𝑛+𝑘−1)×𝑑 . The first 𝑛 posi-
tions remain unchanged from the original input (i.e., Eq. (2)), while
the latent representation h0

𝑛+𝑖 at position 𝑛 + 𝑖 is calculated as the
summation of the last output h𝐿

𝑛+𝑖−1 from the previous step and
the 𝑖-th reasoning position embedding p𝑅

𝑖
:

h0𝑛+𝑖 = h𝐿𝑛+𝑖−1 + p𝑅𝑖 . (4)

To differentiate between item encoding outputs and reasoning
outputs, we denote the hidden states of the model’s final layer
from position 𝑛 to 𝑛 + 𝑘 as R = [r0, r1, . . . , r𝑘 ], where r𝑖 ∈ R𝑑

represents the reasoning hidden state at the 𝑖-th step. To obtain the
user representation, a straightforward approach is to follow the
traditional paradigm i.e., use the last reasoning output r𝐾 as h𝑢 .
Then, we calculate the predicted probability for the user 𝑢 as 𝑦 =

softmax(h𝑢 ·E⊤) and use cross-entropy loss as the recommendation
objective function:

LRec = − log𝑦𝑣+ , (5)

where 𝑦𝑣+ denotes the prediction probability of the ground-truth
item 𝑣+ for user 𝑢’s next interaction.

However, this naive optimization objective still faces a critical
issue: the lack of supervision signals for intermediate reasoning
states makes the model vulnerable to the risk of reasoning pattern
degradation. Next, we introduce two simple yet effective reasoning
learning strategies to address these challenges.

3.2 Ensemble Reasoning Learning (ERL)
To provide effective supervised signals for the implicit reasoning
process, we propose an Ensemble Reasoning Learning (ERL) method.
This approach uses the hidden states of different reasoning steps as
multi-view representations of the user’s evolving interests. In other
words, we apply the idea of ensemble learning [4, 20] to aggregate
diverse reasoning results from different reasoning steps, thereby
avoiding suboptimal performance caused by the final output alone.

3.2.1 Multi-Step Reasoning Supervision. Specifically, we treat
the reasoning hidden states from multiple steps as multi-vector
user representations and apply cross-entropy loss (cf. Eq. (5)) to the
ensembled sequence representation to enhance process guidance.
Therefore, instead of using only the reasoning state at the last step,
ERL utilizes an average pooling layer to aggregate the reasoning
hidden states from all steps to obtain the final user representation,
i.e., h𝑢 = 1

𝐾

∑𝐾
𝑖=0 r𝑖 .

3.2.2 KL Divergence Regularization. However, simply using
the above recommendation objective for model training is obvi-
ously inefficient. The recommender may take shortcuts by directly
copying the previous reasoning output to optimize the parameters,
which can lead to a pattern collpase effect, consequently under-
mining the advantage of computational scaling during inference
processes. To this end, inspired by the works [11, 12], we introduce
a Kullback-Leibler (KL) divergence constraint, a popular and simple
regularization technique to mitigate the homogenization output
issue. To be specific, we aim to increase the reasoning output di-
versity across different steps, encouraging the model’s multi-step
reasoning process to gather multi-view insights, and better model
the user’s complex interest distribution, ultimately contributing to
the overall sequence recommendation performance. Formally, we
pair the predictive probability distributions of different reasoning
states in pairwise combinations and maximize the KL divergence
between these distribution pairs, which is equivalent to minimizing
the following regularization term:

LKL = −
𝐾−1∑︁
𝑖=0

𝐾∑︁
𝑗=𝑖+1

KL(𝑦 (𝑖 ) ∥𝑦 ( 𝑗 ) ). (6)

By combining the recommendation loss and the above KL regu-
larization term, the overall learning objective for the ERL method
is to minimize the following loss function:

LERL = LRec + 𝜆LKL, (7)

where 𝜆 is a hyperparameter that balances the constraint strength.
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3.2.3 Inference Phase. In the inference phase, we compute the
inner product or cosine similarity (depending on the specific se-
quential recommendation algorithm) between user representation
h𝑢 and all candidate item representations, with top-scoring items
selected as the final recommendation list.

3.3 Progressive Reasoning Learning (PRL)
Unlike the ensemble reasoning learning method, we explore an-
other Progressive Reasoning Learning (PRL) mechanism. The core
idea is to design a progressive distribution sharpening strategy to
guide the intermediate reasoning chains, gradually approximating
the user’s true preference distribution. Intuitively, as the compu-
tational power allocated to the inference time increases, the rec-
ommendation model should be able to more accurately capture
the fine-grained sequential features, narrowing the discrepancy
between the predicted and actual user interest distribution.

3.3.1 Progressive Temperature Annealing (PTA). Drawing
an analogy the human cognitive process, as the thinking depth
increases, reasoning pathways become progressively refined until
converging toward optimal solutions. Similarly, we expect that as
the model’s computations increases, the recommender would gradu-
ally clarify the user’s interest evolving patterns, which is manifested
as sharper predicted distributions. Inspired by this motivation, we
propose a simple Progressive Temperature Annealing (PTA) method
to guide the reasoning process. To achieve this, we first introduce a
temperature coefficient, 𝜏𝑘 , for the 𝑘-th reasoning step to adjust the
predicted distribution sharpness, which is formulated as follows:

𝜏𝑘 = 𝜏 ∗ 𝛼𝐾−𝑘 ,

𝑦 (𝑘 ) = softmax(r𝑘 · E⊤/𝜏𝑘 ),
(8)

where 𝜏 is the base temperature, and 𝛼 is a hyperparameter that
controls the temperature decay rate.

In contrast to ensemble reasoning learning method, we apply
separate recommendation losses to each reasoning hidden state to
inject process supervision into the reasoning process, as follows:

LRec = −
𝐾∑︁
𝑘=0

log𝑦 (𝑘 )
𝑣+ , (9)

where 𝑦 (𝑘 )
𝑣+ represents the logit corresponding to the 𝑣+ item. With

this lean annealing strategy, the model is encouraged to explore a
broader solution space in the early reasoning stage, preventing it
from getting stuck in local optima. Then, as the reasoning process
progresses, the value of 𝜏𝑘 is gradually reduced to narrow the search
space, guiding the model towards the global optimum. Thus, the
proposed PTA can more effectively approximate the user’s true
preference distribution.

3.3.2 Reasoning-aware Contrastive Learning (RCL). How-
ever, relying solely on the temperature annealing strategy may not
be sufficient to support the generalization ability of progressive
reasoning learning. This is because, during the reasoning process,
the model may suffer from the reasoning bias, where the model’s
reasoning direction deviates from the correct user interest distri-
bution, ultimately leading to the accumulation of reasoning errors
and deteriorating the reasoning capability. To address the above

challenge, we design a novel Reasoning-aware Contrastive Learning
(RCL) method to enhance the model’s robust reasoning ability.

Specifically, we simulate the preceding accumulated reasoning
error by injecting noise vectors into the reasoning states for each
step, producing the noised reasoning input as follows:

h̃0𝑛+𝑖 = h0𝑛+𝑖 + 𝝐, 𝑖 ∈ {1, 2, . . . , 𝐾}, (10)

where h0
𝑛+𝑖 is defined according to Eq. (2). The vector 𝝐 represents

the added noise embedding, sampled from a normal distribution,
i.e., 𝝐 ∼ N(0, 𝛾I), where I ∈ R𝑑 is the identity matrix of dimension
𝑑 and 𝛾 controls the noise intensity. Then, we can obtain the new
hidden state view R̃ = [r̃1, r̃2, . . . , r̃𝐾 ] by feeding the noised input
into the transformer encoder.

To enhance the model’s robustness in reasoning denoising, we
design a self-supervised task based on Mutual Information Max-
imization (MIM) [29, 31]. Formally, given variables 𝑋 and 𝑌 , the
Mutual Information (MI) measures the reduction in uncertainty of
X after observing Y, which is defined as:

𝐼 (𝑋,𝑌 ) = 𝐻 (𝑋 ) − 𝐻 (𝑋 |𝑌 ),

where 𝐻 (·) and 𝐻 (·|·) denote the entropy and conditional entropy
of the random variable, respectively. Bymaximizing theMI between
the original hidden states R and the denoised hidden states R̃, it
can effectively force the model to capture the essential sequential
information from the user behavior data and historical reasoning
process, achieving self-reflection in the implicit thought space.

However, directly maximizing mutual information is not feasible
due to the intractability of the high-dimensional probability distri-
bution estimation. Inspired by recent works [28, 34], we propose an
InfoNCE-based reasoning contrastive learning method to optimize
the lower bound of mutual information, which is defined as:

LRCL = −
𝐾∑︁
𝑘=1

log
exp(sim(r̃𝑘 , r+𝑘 )/𝜏)

exp(sim(r̃𝑘 , r+𝑘 )/𝜏) +
∑
r−
𝑘
∈R−

𝑘
exp(sim(r̃𝑘 , r−𝑘 )/𝜏)

,

(11)
where sim(·) denotes the dot product similarity function, r+

𝑘
and r−

𝑘
indicate the positive and negative contrastive hidden states at the
𝑘-th step, respectively. For the negative sample set R−

𝑘
, analogous to

existing methods [26, 37], we utilize the 𝑘-th step reasoning states
corresponding to the other item sequences within the same batch.

By combining the recommendation loss (cf. Eq. (9)) and the rea-
soning contrastive loss (cf. Eq. (11)), we can derive the overall ob-
jective function for the PRL method as follows:

LPRL = LRec + LRCL . (12)

3.3.3 Inference Phase. During inference, we directly adopt the
final reasoning step’s output as the user representation, i.e., h𝑢 = r𝐾 .
Then, similar to Sec. 3.2.3, we compute similarity scores between
h𝑢 and the candidate item embedding matrix E to generate the
recommendation list for the user 𝑢.

4 Experiments
In this section, we conduct extensive experiments and analyses to
demonstrate the superiority of our proposed ReaRec framework.
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Table 1: The statistics of experimental datasets.

#Users #Items #Inter. Sparisty

Yelp 13,083 10,697 443,807 99.68%
Video 89,021 22,933 530,989 99.97%
CDs 35,238 87,969 513,991 99.98%
Baby 140,292 30,689 780,809 99.98%

4.1 Experimental Setup
4.1.1 Datasets. To evaluate the effectiveness of our proposed
methods, we conduct extensive experiments on five real-world
recommendation datasets from Yelp and Amazon (Video & Games,
CDs & Vinyl, and Baby Products) platforms. The detailed statistics
of the datasets are summarized in Table 1.

4.1.2 EvaluationMetrics. Weadopt top-kNormalized Discounted
Cumulative Gain (NDCG) and top-k Recall to measure the recom-
mendation performance, which are widely used in related sequen-
tial recommendation research [2, 25, 36]. In this paper, we specif-
ically report NDCG@{10,20}, which assesses both the relevance
and ranking quality of the top-k recommended items, and Re-
call@{10,20}, which evaluates the ability of the model to recall the
ground-truth items in the top-k list.

4.1.3 Baselines. To thoroughly evaluate the generality of our pro-
posed reasoning-enhanced framework, we conduct comprehensive
benchmarking across different types of sequential recommendation
models, including both ID-based and text-based encoding meth-
ods. The baselines are as follows: For ID-based encoding methods,
we compare our methods with the following state-of-the-art models:
SASRec [13] andBERT4Rec [24]. For Text-based encoding methods,
we adopt UniSRec [10] andMoRec [38] as backbones.

4.2 Overall Performance
The recommendation performance of ID-based and text-based se-
quential models across all datasets is summarized in Table 2 and
Table 3, respectively. We derive the following observations:
• For ID-based recommenders (i.e., SASRec and BERT4Rec), we
can find that BERT4Rec slightly outperforms SASRec at different
metrics on most datasets. This suggests that incorporating both
left and right contextual information enhances the model’s ability
to capture sequential patterns more effectively.

• Text-based methods (i.e., UniSRec and MoRec) consistently out-
perform ID-based models across all datasets. For instance, on the
Yelp dataset, UniSRec achieves a 9.51% improvement inNDCG@20
and a 14.14% increase in Recall@20 compared to SASRec. This
improvement can be attributed to the ability of text-based models
to leverage powerful language models for encoding item informa-
tion, effectively mitigating data sparsity issues. In other words, by
learning domain-invariant representations from textual feature
spaces, these approaches effectively alleviate the recommenda-
tion bias, where underrepresented users and items are dominated
by popular ones.

• Our proposed ERL and PRL methods, based on the ReaRec frame-
work, consistently and significantly surpass baseline models at
most cases. For example, for ID-based methods, ERL and PRL

Figure 4: Robustness study w.r.t different user and item sub-
groups on Yelp dataset. ‘Step-𝑥 ’ represents the recommenda-
tion performance at the 𝑥-th reasoning step. ‘UG’ and ‘IG’ de-
note User and Item Group, respectively, where higher group
numbers indicate longer sequences and more popular items.

built on SASRec achieve average improvements of 6.76% and
8.21% respectively across all metrics on five datasets. Similarly,
for text-based methods, ERL and PRL built on UniSRec outper-
form the base model by 12.29% and 10.43% on average. Unlike
conventional SeqRecmodels, our reasoning-enhanced framework
employs latent-space computations during the inference phase
to deepen the feature crossing depth. This effectively unlock the
latent reasoning power of various SeqRec backbones, demonstrat-
ing that increasing inference-time computation is a promising
avenue for improving recommendation performance.

4.3 Further Analysis
4.3.1 Robustness Analysis Across User and Item Subgroups.
To further analyze the robustness of our proposed ReaRec frame-
work, we split users and items into different subgroups to gain
deeper insights into the performance of the multi-step reasoning
framework. Specifically, for users, we divide users into four equal-
sized groups based on sequence length: {UG-0, UG-1, UG-2, UG-
3}, where higher group numbers indicate longer sequences. For
items, following previous work [26, 36], we group them into four
groups based on interaction frequency: {IG-0, IG-1, IG-2, IG-3},
where higher group numbers indicate more popular items. We en-
sure each item group contains the same sample numbers. We fix the
reasoning steps for PRL method during training at three, and ana-
lyze how recommendation performance changes for different user
and item groups as reasoning steps increase during the inference
phase. The detailed experimental results are shown in Fig. 4.

We can clearly observe distinct performance trends across dif-
ferent user and item subgroups. For short-sequence user groups
and unpopular item groups, recommendation quality (NDCG@20)
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Table 2: Performance comparison of different ID-based models on five datasets. ‘N’ and ‘R’ indicate NDCG and Recall metrics,
respectively. ‘Avg.’ represents the average improvement rate across all metrics (i.e., NDCG@{10,20} and Recall@{10,20}). Perfor-
mance improvements are indicated by “↑”, while performance declines are indicated by “↓”.

Dataset Method
SASRec BERT4Rec

N@10 N@20 R@10 R@20 Avg. N@10 N@20 R@10 R@20 Avg.

Yelp

Base 0.0347 0.0452 0.0626 0.1047 - 0.0364 0.046 0.0653 0.1038 -
+ERL

(Improv.)
0.0383

(↑10.37%)
0.0474
(↑4.87%)

0.0691
(↑10.38%)

0.1056
(↑0.86%) ↑6.62% 0.0371

(↑1.92%)
0.0476
(↑3.48%)

0.0661
(↑1.23%)

0.1077
(↑3.76%) ↑2.60%

+PRL
(Improv.)

0.0388
(↑11.82%)

0.0493
(↑9.07%)

0.073
(↑16.61%)

0.1149
(↑9.74%) ↑11.81% 0.0377

(↑3.57%)
0.0487
(↑5.87%)

0.0708
(↑8.42%)

0.1149
(↑10.69%) ↑7.14%

Video & Games

Base 0.0284 0.0353 0.0542 0.0816 - 0.0289 0.0355 0.0548 0.0810 -
+ERL

(Improv.)
0.0301
(↑5.99%)

0.0385
(↑9.07%)

0.0581
(↑7.20%)

0.0915
(↑12.13%) ↑8.59% 0.0311

(↑7.61%)
0.0375
(↑5.63%)

0.0578
(↑5.47%)

0.0832
(↑2.72%) ↑5.36%

+PRL
(Improv.)

0.0299
(↑5.28%)

0.0379
(↑7.37%)

0.0572
(↑5.54%)

0.0890
(↑9.07%) ↑6.81% 0.0306

(↑5.88%)
0.0380
(↑7.04%)

0.0584
(↑6.57%)

0.0879
(↑8.52%) ↑7.00%

CDs & Vinyl

Base 0.0148 0.0174 0.0317 0.0419 - 0.0149 0.0185 0.0326 0.0468 -
+ERL

(Improv.)
0.0182

(↑22.97%)
0.0212

(↑21.84%)
0.0363

(↑14.51%)
0.0482

(↑15.04%) ↑18.59% 0.0165
(↑10.74%)

0.0208
(↑12.43%)

0.0354
(↑8.59%)

0.0524
(↑11.97%) ↑10.93%

+PRL
(Improv.)

0.0155
(↑4.73%)

0.0195
(↑12.07%)

0.0315
(↓0.63%)

0.0470
(↑12.17%) ↑7.08% 0.0162

(↑8.72%)
0.0202
(↑9.19%)

0.0334
(↑2.45%)

0.0496
(↑5.98%) ↑6.59%

Baby Products

Base 0.0112 0.0157 0.0260 0.0437 - 0.0109 0.0154 0.0257 0.0439 -
+ERL

(Improv.)
0.0116
(↑3.57%)

0.0164
(↑4.46%)

0.0228
(↓12.31%)

0.0418
(↓4.35%) ↓2.16% 0.0148

(↑35.78%)
0.0195

(↑26.62%)
0.0293
(↑9.57%)

0.0481
(↑14.01%) ↑21.49%

+PRL
(Improv.)

0.0135
(↑20.54%)

0.0178
(↑13.38%)

0.0281
(↑8.08%)

0.0451
(↑3.20%) ↑11.30% 0.0140

(↑28.44%)
0.0185

(↑20.13%)
0.0291
(↑6.15%)

0.0466
(↑13.23%) ↑16.99%

Table 3: Performance comparison of different Text-based models on five datasets. ‘N’ and ‘R’ indicate NDCG and Recall
metrics, respectively. ‘Avg.’ represents the average improvement rate across all metrics (i.e., NDCG@{10,20} and Recall@{10,20}).
Performance improvements are indicated by “↑”, while performance declines are indicated by “↓”.

Dataset Method
UniSRec MoRec

N@10 N@20 R@10 R@20 Avg. N@10 N@20 R@10 R@20 Avg.

Yelp

Base 0.0380 0.0495 0.0737 0.1195 - 0.0391 0.0516 0.0757 0.1258 -
+ERL

(Improv.)
0.0406
(↑6.84%)

0.0521
(↑5.25%)

0.0770
(↑4.48%)

0.1227
(↑2.68%) ↑4.81% 0.0417

(↑6.65%)
0.0531
(↑2.91%)

0.0832
(↑9.91%)

0.1283
(↑1.99%) ↑5.36%

+PRL
(Improv.)

0.0413
(↑8.68%)

0.0529
(↑6.87%)

0.0788
(↑6.92%)

0.1253
(↑4.85%) ↑6.83% 0.0410

(↑4.86%)
0.0532
(↑3.10%)

0.0804
(↑6.21%)

0.1289
(↑2.46%) ↑4.16%

Video & Games

Base 0.0328 0.0421 0.0683 0.1054 - 0.0350 0.0438 0.0716 0.1065 -
+ERL

(Improv.)
0.0364

(↑10.98%)
0.0440
(↑4.51%)

0.0711
(↑4.10%)

0.1015
(↓3.70%) ↑3.97% 0.0392

(↑12.00%)
0.0485

(↑10.73%)
0.0744
(↑3.91%)

0.1112
(↑4.41%) ↑7.76%

+PRL
(Improv.)

0.0352
(↑7.32%)

0.0433
(↑2.85%)

0.0658
(↓3.66%)

0.0982
(↓6.83%) ↓0.08% 0.0371

(↑6.00%)
0.0462
(↑5.48%)

0.0708
(↓1.12%)

0.1067
(↑0.19%) ↑2.64%

CDs & Vinyl

Base 0.0150 0.0208 0.0298 0.0527 - 0.0186 0.0235 0.0405 0.0604 -
+ERL

(Improv.)
0.0208

(↑38.67%)
0.0259

(↑24.52%)
0.0428

(↑43.62%)
0.0629

(↑19.35%) ↑31.54% 0.0199
(↑6.99%)

0.0248
(↑5.53%)

0.0417
(↑2.96%)

0.0609
(↑0.83%) ↑4.08%

+PRL
(Improv.)

0.0191
(↑27.33%)

0.0253
(↑21.63%)

0.0394
(↑32.21%)

0.0640
(↑21.44%) ↑25.66% 0.0198

(↑6.45%)
0.0249
(↑5.96%)

0.0417
(↑2.96%)

0.0618
(↑2.32%) ↑4.42%

Baby Products

Base 0.0152 0.0199 0.0315 0.0501 - 0.0176 0.0231 0.0371 0.0588 -
+ERL

(Improv.)
0.0183

(↑20.39%)
0.0239

(↑20.10%)
0.0367

(↑16.51%)
0.0589

(↑17.56%) ↑18.64% 0.0184
(↑4.55%)

0.0242
(↑4.76%)

0.0373
(↑0.54%)

0.0602
(↑2.38%) ↑3.06%

+PRL
(Improv.)

0.0182
(↑19.74%)

0.0236
(↑18.59%)

0.0359
(↑13.97%)

0.0575
(↑14.77%) ↑16.77% 0.0189

(↑7.39%)
0.0247
(↑6.93%)

0.0376
(↑1.35%)

0.0611
(↑3.91%) ↑4.89%
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Table 4: Inference time statistics for different steps. “Cost
Inc.” is short for Cost Increase, where higher values indicate
greater time overhead. Note that the optimal performance
typically corresponds to Step-2.

Base Step-1 Step-2 Step-3 Step-4 Step-5

SASRec 5.6761 5.7985 5.8752 5.9305 6.0310 6.2786
Cost Inc. - 2.16% 3.51% 4.48% 6.25% 10.61%
BERT4Rec 5.6535 5.7685 5.9174 5.9621 6.0862 6.1224
Cost Inc. - 2.03% 4.67% 5.46% 7.65% 8.29%
UniSRec 5.6061 5.6312 5.7596 5.8732 6.0303 6.0502
Cost Inc. - 0.45% 2.74% 4.76% 7.57% 7.92%
MoRec 5.6638 5.7143 5.8391 5.9565 5.9659 5.9812
Cost Inc. - 0.89% 3.10% 5.17% 5.33% 5.60%

Note: All time units are in second (s).

tends to steadily improve as the reasoning steps increase. For ex-
ample, in the item group IG-1, more reasoning steps bring better
performance gains of 12.08%, 16.35%, and 18.69%, respectively. In
contrast, performance tends to decline for users with long interac-
tion sequences and popular items as the reasoning steps increase.
We speculate that this is primarily because longer user sequences
provide richer contextual information, making it easier to mine
interest evolution patterns. Beyond a certain point, additional infer-
ence computation fails to yield further performance improvements
and even leads to performance degradation due to overthinking.
Similarly, for high-popularity items, their well-trained representa-
tions allow the recommender to easily capture collaborative signals,
making deeper feature crossing depth less beneficial. Overall, long-
tail users and items usually require more thinking space to reason
sparse interaction signals, whereas highly active users and items
may not need redundant computational expansion. In the future, it
may be necessary to develop differentiated fast and slow reasoning
mechanism for different user sequences to further improve overall
recommendation performance.

4.3.2 Impact of Reasoning Steps on Recommendation Per-
formance. We investigate the variation trend of recommendation
performance under different inference steps, that is, we train and
perform inference using specified numbers of reasoning steps. We
adopt NDCG@20 as the main evaluation metric. We compare the
following approaches: (1) Base: The original SASRec sequential
recommender serves as the baseline without reasoning enhance-
ment; (2) Naive: Based on the Base method, we extend it to a
multi-step reasoning paradigm, where the last hidden state is au-
toregressively fed back into the model, and only the final position
is used directly as the user representation; (3) RPE: Building on the
Naive approach, we further integrate Reasoning Positional Embed-
dings to bridge the task gap between sequence encoding mode and
reasoning mode. Additionally, we also explore the performance of
(4) Ensemble Reasoning Learning (ERL) and (5) Progressive
Reasoning Learning (PRL) under multi-step reasoning.

As shown in Fig. 5, the Naive method, which lacks a special-
ized design, does not yield performance improvements and even
underperforms compared to the base model. This is likely due to

1 2 3 4 5
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Figure 5: The performance variation trend of different meth-
ods under different reasoning steps.

the model’s inability to distinguish between sequence encoding
and the reasoning phases. Introducing reasoning positional embed-
dings (+RPE) effectively mitigates this task gap, yielding obvious
performance gains. However, simply optimizing cross-entropy loss
on the final-step output does not provide adequate supervision
guidance for the intermediate reasoning states, potentially lead-
ing to reasoning pattern degradation and error accumulation. In
contrast, our ERL and PRL methods significantly alleviate these
issues by explicitly injecting stepwise supervision signals, reducing
the optimization difficulty to some extent. Notably, as the number
of inference steps increases, we observe a consistent performance
decline across all methods. This suggests that excessive reasoning
may trigger “overthinking”—simple user interaction patterns may
not require intensive latent reasoning. Moreover, considering the
post-hoc optimal step analysis in Fig. 2, developing an adaptive in-
ference depth selection mechanism to balance reasoning depth and
user sequence complexity presents a highly meaningful direction
for future research.

4.3.3 Impact of Reasoning Steps on Inference Latency. Our
ReaRec framework’s expanded computational demands during in-
ference introduce additional overhead. To evaluate this, we use the
PRL method as an example, measuring the time cost on the test
set as reasoning steps increase, as shown in Table 4. The results
indicate that, despite adopting a recurrent autoregressive inference
mechanism, the extra latency remains manageable. This efficiency
stems from KV Caching technique, which significantly reduces
attention computation complexity from𝑂 (𝑁 2) to𝑂 (𝑁 ) by reusing
key and value vectors of past steps, thereby effectively minimizing
redundant calculations. Further analysis with Fig. 5 reveals that our
approaches generally achieve optimal performance at two reason-
ing steps. This means that our method increases performance by
an average of 7.49% across all metrics with only a modest latency
overhead of 3.51%, which is acceptable and practical for real-world
deployment in industrial recommender systems. These results sug-
gest that our efficient ReaRec framework holds great promise for
real-world applications.

5 Conclusion
In this work, we pioneer the integration of deep reasoning into se-
quential recommendation by introducingReaRec, a novel inference-
time computing framework inspired by the think-before-action par-
adigm. Unlike traditional direct inference models, ReaRec expands
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computational depth through multi-step implicit reasoning, en-
abling the SeqRec model to think before recommendation. We also
propose two lightweight learning strategies to address the chal-
lenges of multi-step reasoning-process optimization: Ensemble Rea-
soning Learning (ERL) and Progressive Reasoning Learning (PRL),
which enhance reasoning robustness and effectiveness. Extensive
experiments across five real-world datasets validate the effective-
ness and generalizability of our proposed ReaRec. Notably, ReaRec
not only improves performance for long-tail users and items but
also raises the performance ceiling of existing SeqRec backbones
by up to 50% with post-hoc optimal step selection, highlighting the
untapped potential of ReaRec for sequential recommendation. We
believe our work opens a promising direction for future research
at the intersection of reasoning and recommendation.
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