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Abstract
Multilingual information retrieval has emerged as powerful tools for
expanding knowledge sharing across languages. On the other hand,
resources on high quality knowledge base are often scarce and in
limited languages, therefore an effective embedding model to trans-
form sentences from different languages into a feature vector space
same as the knowledge base language becomes the key ingredient
for cross language knowledge sharing, especially to transfer knowl-
edge available in high-resource languages to low-resource ones. In
this paper we propose a novel strategy to fine-tune multilingual
embedding models with weighted sampling for contrastive learn-
ing, enabling multilingual information retrieval with a monolingual
knowledge base. We demonstrate that the weighted sampling strat-
egy produces performance gains compared to standard ones by up
to 31.03% in MRR and up to 33.98% in Recall@3. Additionally, our
proposed methodology is language agnostic and applicable for both
multilingual and code switching use cases.
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1 Introduction
The task of Information Retrieval is to find relevant information
from a large collection and a knowledge base often complements
this retrieval task and facilitates various downstream tasks as well.
With the recent emergence of Large Language Models (LLMs) as a
powerful tool to build dialogue systems [21, 25, 26] and conversa-
tion AIs, the retrieved information can play a critical role in increas-
ing practicality and reliability of these systems. Application of LLMs
has also achieved remarkable advancements in multilingual sce-
narios and many of the current frontier LLMs, such as Anthropic’s
Claude 3 [1] and Cohere’s Command A [3] are focused to excel
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in the multilingual settings to support global businesses. On the
other hand, because knowledge base construction is labor-intensive
and expensive [14], imbalanced data, quality and scarcity issues
become the bottleneck for rapid knowledge base development, es-
pecially for low-resource languages. Additionally there has been a
surge of interest in code-switching recently where communicators
switch between two or more languages during linguistic interac-
tions [7, 20]. This communication style is common in bilingual
and multilingual communities [9, 23]. For example, in US mixing
Spanish and English is a common phenomenon while in Canada
mixing French and English has been often observed. However, it
remains a challenging task in Information Retrieval as the language
IDs are not specified and knowledge base with code-switching
context is scarce. Existing work has been mainly focused on au-
tomatic multilingual knowledge base construction [10, 24] where
knowledge bases of low-resource languages are automatically prop-
agated based on knowledge bases in well-populated high resource
languages.

Contributions. Different from previous approaches, we propose a
novel embedding model development pipeline to align multilingual
information retrieval with a monolingual knowledge base, there-
fore removing the bottleneck of multilingual knowledge base con-
struction in information retrieval systems. Specifically, we design a
weighted sampling strategy to select positive and negative pairs for
contrastive learning, which guides the model to embed queries with
similar semantic meanings into close embedding vector space across
different languages. Our approach aims at a more data-efficient mul-
tilingual information retrieval system which only requires a high
resource language (e.g., English or French) for the knowledge base.
Experimental results demonstrate that our approach enables an em-
bedding model to properly handle multilingual queries. The ability
to share knowledge in multiple languages is a fundamental compo-
nent to ensure the development of Conversation AIs systems and to
enable both businesses and individuals to reach a broader range of
communities, fostering inclusivity, accessibility and collaboration
among international teams.

2 Methodology
Embedding models such as E5 [17], GTE [11], Nomic [13], and
Arctic-Embed [12] are typically trained with three stages: pretrain-
ing via masked language modeling, large scale contrastive pretrain-
ing with in-batch negatives, and finally quality focused contrastive
fine-tuning [2, 19, 22]. Our work focuses on the contrastive fine-
tuning stage and the proposed methodology can be applied on
any open-source text embedding models. One key ingredient for
effective embedding is supervised fine-tuning with a high quality
dataset which contains explicitly labeled positive and negative pairs.
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Specifically, we focus on the query-to-query multilingual retrieval
problem with a monolingual knowledge base.

Given a user query 𝑞 in a target language𝑇 , the goal is to retrieve
a similar example query 𝑞ex from the knowledge base in language
𝐸 where 𝐸 is different from 𝑇 . The knowledge base contains a set
of example queries and their corresponding labels

𝐾𝐵𝐸 = (𝑞ex1 , 𝑙1), (𝑞ex2 , 𝑙2), ..., (𝑞ex𝑁 , 𝑙𝑁 ) .
For example, a key component of task-oriented dialogue systems is
to identify the underlying purpose or intent of a user in a conversa-
tion [6, 21]. To facilitate information retrieval business can build a
monolingual intent knowledge base in English which contains a set
of customer query and customer intent pairs based on high quality
data source or human annotation. As business expands to other
languages, it becomes infeasible to build a separate knowledge base
in each language therefore the goal is to share the English knowl-
edge base across all languages. If a user input query is in Spanish
(the target language𝑇 ), the goal is to retrieve a semantically similar
English query in the knowledge base, 𝑞ex𝑗 , and the corresponding
intent label 𝑙 𝑗 . In order to build a multilingual Information Retrieval
system with an English-only (or any other monolingual) knowl-
edge base, it is crucial for the embedding model to map English and
non-English queries into a shared representation space to enable
non-English retrieval.

Contrastive Training Data. In contrastive learning, the model
learns by distinguishing between similar and dissimilar queries
from positive and negative pairs. An effective embedding model
will project similar (positive) pairs closer together and dissimilar
(negative) pairs further apart in a embedding vector space. For pos-
itive pairs, existing work often uses a noisy data source to identify
relevant queries, then applies some heuristic and consistency qual-
ity filters to improve data quality [4, 8, 13, 18]. For negative pairs,
[15] demonstrated the importance of training on hard negatives,
where “hard” refers to the fact that it is not trivial to determine
their lower relevance relative to the positive examples, therefore,
many existing work has been following this paradigm to identify
the hardest negatives for each training example. For example, [12]
leveraged a pre-existing text embedding model to identify and score
the hardest negatives for each training example while NV Retriever
[5] also added a filtering step where any negative with a relevance
score exceeding a specified percentage of the known-positive’s
score is discarded as a potential false negative.

Contrastive Training Data Generation. In our methodology, we
propose a new strategy to leverage the available labels, 𝑙1, 𝑙2, ..., 𝑙𝑛 , in
the monolingual knowledge base to construct positive and negative
multilingual pairs. Our approach demonstrates the benefits of a
weighted sampling strategy of negative mining based on relevance,
which in Section 3 we show that it is more effective than focusing
purely on selecting the "hardest" negatives possible, or a rank for
relevance scores. Algorithm 1 shows the details of our proposed
approach step-by-step and Figure 1 is an illustration with examples.

3 Experiments and Results
In this paper, we conduct experiments to evaluate the plausibility
of our proposed methods for the business use case of performing

Algorithm 1 Contrastive Training Data Generation
• Require:
A knowledge base in language 𝐸 with 𝑁 example query and label
pairs

𝐾𝐵𝐸 = (𝑞ex1 , 𝑙1), (𝑞ex2 , 𝑙2), ..., (𝑞ex𝑁 , 𝑙𝑁 ) .
A set of 𝑀 unlabelled queries 𝑞’s in a target language 𝑇
(𝑞1, 𝑞2, ..., 𝑞𝑀 ).
• Data Generation
◦ Step 1: Initialize an empty paired dataset 𝑃 = {}
◦ Step 2: Split 𝐾𝐵𝐸 into index and training set. We split the
𝑁 example query and label pairs into two subsets 𝑁1 and 𝑁2,
reserve the𝑁1 pairs for retrieval index, while using the remaining
𝑁2 for systhetic data generation.
◦ Step 3: Generate Positive Pairs: For each query 𝑞𝑖 in 𝑁2
which is in language 𝐸, use an LLM to translate it to the target
language 𝑇 into 𝑞𝑇

𝑖
. Randomly sample one query from all the

queries sharing the same label in the Index set 𝑁1, 𝑞
′
𝑖
. Update 𝑃

with the positive pair (𝑞𝑇
𝑖
, 𝑞

′
𝑖
), i.e. 𝑃 = 𝑃 ∪ (𝑞𝑇

𝑖
, 𝑞

′
𝑖
).

◦ Step 4: Generate Negative Pairs based on weighted sam-
pling: For each query 𝑞𝑖 in 𝑁2, use an LLM to translate it to the
target language 𝑇 into 𝑞𝑇

𝑖
(or reuse 𝑞𝑇

𝑖
from Step 3). For each

query 𝑞 𝑗 in the index set 𝑁1, calculate a similarity score 𝑠𝑖 𝑗 be-
tween 𝑞𝑖 ’s label 𝑙𝑖 and 𝑞 𝑗 ’s label 𝑙 𝑗 . We generate two types of
negative pairs:
• Random negative: Randomly sample one query 𝑞

′′
𝑖
from all

the queries in set 𝑁1 with a different label than 𝑙𝑖 .
• Hard negatives: Randomly sample 𝑘 queries from the index

set 𝑁1 based on sampling weight 𝑠𝑖 𝑗 . The higher the similarity
score 𝑠𝑖 𝑗 , the more likely a query is to be sampled. The intuition
is that queries with similar labels are harder to distinguish,
making them better candidates for hard negatives.

With 𝑘 = 2, we yield three negative pairs in total: one random
negative pair (𝑞𝑇

𝑖
, 𝑞

′′
𝑖
) and two hard negative pairs (𝑞𝑇

𝑖
, 𝑞

′′′
𝑖
) and

(𝑞𝑇
𝑖
, 𝑞

′′′′
𝑖

). This maintains our desired positive to negative ratio
of 1:3 when using contrastive loss. Update 𝑃 with these negative
pairs, i.e., 𝑃 = 𝑃 ∪ {(𝑞𝑇

𝑖
, 𝑞

′′
𝑖
), (𝑞𝑇

𝑖
, 𝑞

′′′
𝑖
), (𝑞𝑇

𝑖
, 𝑞

′′′′
𝑖

)}.
◦ Step 5: Synthetic Data Augmentation: Compared to the
abundance of unlabeled data, high-quality labeled examples in
𝐾𝐵𝐸 are more scarce. To address this data scarcity issue, we also
use synthetic data creation to construct additional positive and
negative pairs. For any query in the target language 𝑇 , use a
LLM to generate a semantically similar query to form a positive
pair, and 3 semantically different queries in language 𝐸 to form
3 negative pairs. Update 𝑃 with the these pairs.

Information Retrieval for Hinglish queries using an English knowl-
edge base. Hinglish refers to the conversation style where speakers
are mixing Hindi and English in one conversation interaction and
often within one single sentence, which is a very common way of
communication for the India marketplace.

Our proposed methodology is language agnostic and can be ap-
plied to any language with low-resource constraints. Therefore, we
simply treat code-switching as a new language. In our experiments
we fine-tune an embedding model optimzed to embed English and
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Figure 1: Illustration of our contrastive training data generation algorithm. For each translated query (left), we create a positive
pair (blue) with queries sharing the same label, k hard negative pairs (red) from queries with similar labels selected through
weighted sampling, and 1 randomnegative pair (green) from queries with different labels selected randomly from the knowledge
base.

Hinglish queries into the same vector space for Information Re-
trieval.

3.1 Datasets
Data Anonymization. Due to business considerations, we are not

permitted to share the results using the original customer queries.
As a result, we manually anonymized both the labels and transcripts
to ensure no personal information is included. Additionally, spe-
cific product and service names were denonymized to prevent the
identification of the company from the transcript or label descrip-
tions. Despite these modifications, the conclusions drawn from our
experiments remain valid.

We collect about 35,000 dialogue transcripts with customer in-
tent labels in English to construct our 𝐾𝐵𝐸 . Following the steps
in Algorithm 1 we split these transcripts into two subsets: 3000 to
construct the retrieval index and the remaining 32,000 to generate
constrastive training data. For Step 5, we collect 10,000 unlabelled
dialogue transcripts in Hinglish for data augmentation.

3.2 Experiments
As discussed earlier, we proposed Algorithm 1, which employs a
hybrid approach combining both hard and random negative mining,
along with synthetic data generation. This mixed strategy helps re-
duce excessive reliance on translated queries alone, with synthetic
data generation performed directly on Hinglish data available na-
tively.

In our experimental setup, we first evaluated several open-source
multilingual retrieval models as the foundation for our fine-tuning
process:

• paraphrase-multilingual-mpnet-base-v2
• multilingual-e5-base
• paraphrase-multilingual-MiniLM-L12-v2
• stsb-xlm-r-multilingual

To validate the effectiveness of our proposed approach and to
better understand the contribution of different components, we

conducted ablation studies comparing Algorithm 1 against several
alternative strategies:

Negative Sampling Variations.

• Random Negative Mining: This represents the simplest
approach where we set 𝑘 = 0 in Step 4 of Algorithm 1, select-
ing all negatives randomly with equal probability regardless
of semantic similarity.

• Hard Negative Mining: In this variation, we set 𝑘 = 3
in Step 4, selecting all negatives using weighted sampling
based on similarity scores. This targets examples that are
more challenging to distinguish.

• Hardest Negative Mining: Taking the hard negative ap-
proach further, we not only set 𝑘 = 3 but also restrict sam-
pling to only the top-3 most similar labels (excluding exact
matches). This focuses exclusively on the most challenging
negative examples.

Data Source Variations. To evaluate the impact of synthetic data
augmentation described in Step 5, we also tested:

• Labeled Data Only: This variant trains solely on the high-
quality translated examples from the original English dataset,
omitting the synthetic data generation Step 5.

• Synthetic Data Only: Conversely, this approach relies ex-
clusively on synthetically generated data in Step 5, repre-
senting the scenario where no labeled data is available in
any language.

These methodical comparisons allowed us to isolate the contri-
bution of each component in our algorithmic design and confirm
the superiority of our hybrid approach.

3.3 Implementation Details
We fine-tuned various pretrained multilingual embedding models
using the InfoNCE contrastive loss [16] with a maximum sequence
length of 512 tokens. Training was performed on 4 NVIDIA A10G
GPUs using PyTorch’s DistributedDataParallel framework with a
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batch size of 32. Each model was trained for 15 epochs, with early
convergence typically observed around epochs 8-9. For optimiza-
tion, we used AdamW with a learning rate of 2e-5 and a linear
warmup period. Claude Sonnet 3.51 was employed for both query
translation and generation of synthetic positive and negative pairs
for training.

3.4 Evaluation Metrics
For evaluation, we compute Recall@1, Recall@3, Recall@5, and
Recall@10 metrics, along with Mean Reciprocal Rank (MRR). These
metrics are particularly appropriate for our task since we have a
single ground truth label for each query, while our retrieval system
returns ranked predictions. Recall@k measures whether the cor-
rect label appears within the top-k retrieved results, providing a
clear assessment of our model’s retrieval performance at various
thresholds of interest.

3.5 Results and Discussion
Figure 2 shows the performance comparison of different multilin-
gual embedding models during training. The multilingual-e5-base
model consistently outperforms other models across all epochs,
reaching the highest Recall@1 of approximately 0.54 by the final
epoch. The paraphrase-multilingual-mpnet-base-v2 model performs
comparably well, while stsb-xlm-r-multilingual and paraphrase-
multilingual-MiniLM-L12-v2 show significantly lower performance.
Based on these results, we selectedmultilingual-e5-base as our foun-
dation model for all subsequent experiments. Appendix Section A
presents the comparison plots between these models on Recall@3,
Recall@5, Recall@10, and MRR, which show a similar pattern as
Recall@1.

The evaluation results for different negative sampling and data
strategies are presented in Table 1. Our ablation study reveals that
combining random and hard negatives yields better performance
than approaches using only one type of negative examples. While
the Labeled Data Only approach performs comparably to our pro-
posed method, we attribute this to the composition of our test set,
which primarily contains samples similar to the labeled data. Nev-
ertheless, Algorithm 1’s hybrid approach provides better protection
against performance degradation on original queries in the low-
resource language. The significantly poorer performance of the
purely synthetic data approach indicates the crucial importance of
high-quality labeled examples in the training process.

Why doesmixed-mining strategy work better? The superior
performance of Algorithm 1 can be attributed to its hybrid approach.
By combining both random and hard negatives, the model opti-
mizes the embedding space globally while simultaneously empha-
sizing differentiation in local neighborhoods. Pure hard negative
mining (0.4613) or hardest negative mining (0.4012) approaches
underperform because they overly focus on disambiguating local
neighborhoods without maintaining global embedding structure.
Additionally, the incorporation of synthetic data in Algorithm 1
helps improve performance on low-resource language queries, re-
ducing overfitting to the translated query distribution while main-
taining strong performance on the original dataset.

1https://www.anthropic.com/news/claude-3-5-sonnet

Table 1: Performance comparison of different negative sam-
pling and data strategies

Method Top-1 Top-3 Top-10 MRR

Random Negative Mining 0.5308 0.7271 0.8794 0.6520
Hard Negative Mining 0.4613 0.6829 0.8535 0.5982
Hardest Negative Mining 0.4012 0.6678 0.8499 0.5610
Labeled Data Only 0.5474 0.7356 0.8803 0.6639
Synthetic Data Only 0.2191 0.4012 0.6444 0.3550

Using Algorithm 1 0.5450 0.7410 0.8842 0.6653

Figure 2: Performance of Recall@1 at different points during
contrastive fine-tuning.

4 Conclusion and Future Work
Our proposed embedding model development pipeline to align mul-
tilingual information retrieval with a monolingual knowledge base
removes the bottleneck of multilingual knowledge base construc-
tion in information retrieval systems. The ability to share knowl-
edge across languages facilitates faster and easier global expansion
of conversation AI systems, specifically to lower resource languages
or code-switching use cases. Our comprehensive experiment re-
sults in a code-switching use case demonstrate the effectiveness
and robustness of our proposed weighted sampling strategy for
contrastive learning. Our framework is language agnostic therefore
applicable for any target language and we hope our paper can help
push forward the research in the multilingual information retrieval
communities and facilitate faster global expansion for businesses.

In the future, we seek to continue our experimentation to lever-
age monolingual knowledge base for multilingual dialogue systems.
Additionally, we hope to explore more robust embedding models
with compression approaches such as binarization or quantization
to further improve performance.
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Figure 3: Performance metrics at different points during contrastive fine-tuning for various multilingual embedding models
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