
A Resource for Studying Textual Poisoning Attacks against
Embedding-based Retrieval-Augmented Generation in

Recommender Systems
Fatemeh Nazary

fatemeh.nazary@poliba.it
Polytechnic University of Bari

Bari, Italy

Yashar Deldjoo
yashar.Deldjoo@poliba.it

Polytechnic University of Bari
Bari, Italy

Tommaso di Noia
tommaso.dinoia@poliba.it

Polytechnic University of Bari
Bari, Italy

Abstract
Recent advances in retrieval-augmented generation (RAG) have sig-
nificantly improved recommender systems by grounding large lan-
guagemodels (LLMs) in external item information. However, this re-
liance on text-based embedding retrieval also makes such pipelines
vulnerable to stealthy data poisoning attacks. In this work, we in-
vestigate subtle, LLM-driven text manipulations—such as injecting
emotional phrases, borrowing from popular “neighbor” items, and
inserting trigger words—to impact both retrieval rankings and the
final recommendations. Our experiments on MovieLens demon-
strate that even minimal edits (e.g., altering 10% of tokens) can
effectively promote or demote items without degrading overall
system accuracy, making such attacks difficult to detect.

We systematically evaluate four rewriting strategies (Emotional,
Neighbor, Chain, and Trigger) across popular embedding models
(Sentence Transformers, OpenAI, and LLaMA3) in both promo-
tion and demotion scenarios. Results reveal that the magnitude
and direction of ranking shifts depend on the popularity of the
target (victim) items, the token-edit budget, and the embedding
vulnerability of LLMs. Specifically, while LLaMA-based embed-
dings are consistently prone to manipulation, OpenAI embeddings
show some resilience in demotion but are susceptible to promo-
tion attacks. In all cases, global metrics like nDCG and Recall re-
main largely unaffected, underscoring the stealthiness of these
minimal-edit poisoning strategies. Code and data are available at
https://anonymous.4open.science/r/Poison-RAG-Plus-6B03/README.md
.
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1 Introduction
Recent advancements in recommender systems have seen a surge
in the adoption of retrieval-augmented generation (RAG) tech-
niques [3, 6]. RAG enhances the output of large language models
(LLMs) by integrating information from authoritative external data
sources before generating recommendations, rather than relying
solely on the model’s internal parameters. This grounding process
significantly improves the accuracy and relevance of recommen-
dations by incorporating up-to-date, context-specific information
(e.g., user reviews or item tags).

A typical RAG-based recommender pipeline (Figure 1) retrieves
potential items from an external knowledge base (e.g., a database
or a corpus of item descriptions) and employs an LLM to synthesize
the retrieved content into final recommendations. While traditional
methods such as collaborative filtering (CF) can aid in the retrieval
stage by analyzing user-item interactions, embedding-based re-
trieval has emerged as a particularly effective strategy within RAG
systems. Embedding-based retrieval enhances the ability of the sys-
tem to handle less popular or new items, often prevalent in long-tail
domains. Moreover, these retrieval methods offer notable advan-
tages, such as real-time adaptability to changes in external data. For
instance, if an item wins an award, a RAG-based system can seam-
lessly incorporate this new information into its recommendations
without needing to retrain the entire model [17, 20, 23]. However,
as RAG systems increasingly rely on text-based embedding-based
methods, they become vulnerable to adversarially-designed data
poisoning attacks, targeting textual data. A malicious actor could
subtly alter item descriptions (e.g., adding emotional triggers or
negative phrases) to manipulate retrieval and generation outcomes.
Unlike traditional poisoning attacks, which tamper with user rat-
ings, these text-based attacks can remain undetected if they do not
drastically change the semantics and meaning of the item descrip-
tions.

More importantly, whereas many previous works on the secu-
rity of recommender systems [2, 5, 14] have predominantly focused
on manually crafted shilling attacks or machine-learned adver-
sarial attacks—often targeting vulnerabilities at inference time in
collaborative-based recommenders—the rapid emergence of large
language models (LLMs) offers powerful new avenues for design-
ing stealthy and adaptable exploits. For example, an attacker could
employ an LLM such as ChatGPT to enhance the visibility of an
underperforming product by analyzing reviews of a popular com-
petitor and then subtly rewriting the metadata of the target (victim)
item. Crucially, these edits might change only a small fraction of
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Figure 1: High-level RAG architecture in a recommender setting. A retriever selects candidate items (step 1). An LLM uses these
retrieved texts and user queries to re-rank or generate final recommendations (step 2). In our poisoning scenario (red arrow), an
attacker subtly modifies item descriptions to alter how retrieval and generation perceive items.

the text (e.g., Δ = 10% of tokens) while retaining semantic coher-
ence—quantitatively enforced via semantic similarity metrics—thus
making the attacksminimal under given budget and stealthy. At-
tackers can further borrow language cues from high-profile “neigh-
bor” items to amplify the perceived relevance and appeal of the
target victim item. Once fed into a retrieval-augmented generation
(RAG) pipeline, these neighborhood-based poisoning manipulations
can influence both the retrieval module—ranking items by embed-
ding similarity—and the subsequent LLM, which re-ranks or refines
recommendations based on textual representations. The combined
effect is a notable shift in recommendation rankings that is largely
invisible to conventional anomaly detection. In this work, we ex-
plore these promotion and demotion attacks in the context of an
embedding-based RAG framework.1

Despite these serious risks, the community lacks standardized
resources—clean datasets, reproducible scripts, and comprehen-
sive benchmarks—that capture such stealthy text-based poisoning.
Without shared data and code, researchers face major challenges
in consistently assessing attack severity, designing robust defenses,
and understanding subtle issues such as semantic drift in LLM-
based retrieval. By providing such resources, we aim to bridge this
gap and foster more systematic research into adversarial vulnera-
bilities in modern recommender systems powered by LLM-driven
RAGs.

Disclaimer: Note that throughout this paper, we use the terms
‘data poisoning attacks edits,”, “edit-based attack,” “textual edits,”
and similar expressions interchangeably.

1Extending these text poisoning strategies to classical collaborative filtering with side
textual information is left as future work.

Resource Contribution
To fill the gap in studying subtle text-based poisoning in retrieval-
augmented recommenders, we offer a comprehensive resource
with the following core components:

1. Formal Framework for Textual Poisoning. We define
a rigorous setup for performing textual attacks, evaluated
within a text-based embedding-driven RAG pipeline. These
attacks rewrite item metadata under two key constraints:
(i) a token-edit budget, which limits the fraction of replaced
or injected tokens, and (ii) a semantic-similarity threshold,
ensuring that the modified text remains sufficiently close to
the original while remaining stealthy.
Within this framework, we introduce four rewriting strate-
gies (emotional, neighbor, chain, and trigger) designed to
either increase or decrease the visibility of a target item
within the RAG pipeline, ultimately affecting provider fair-
ness. We explicitly consider two main scenarios—promotion
and demotion—each with distinct constraints and objectives.
These textual attacks are systematically applied to a real-
world movie dataset, namely MovieLens-latest. The attacks
are inspired by and formalized using insights from recent
research in this direction [1, 7, 8, 10, 11, 19],

2. Paired Original &AttackedMetadata. For the selected do-
main in movies (MovieLens), we release the original textual
descriptions of items alongside multiple poisoned versions.
These variants reflect different stealth levels (e.g., 10% or 40%
token edits) and rewriting styles, enabling direct “before-
and-after” comparisons. Our framework also supports exper-
iments by varying the number of neighbors (𝑛 = 5 or 𝑛 = 10),
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which we have optionally not included in the results due to
the extensive experiments.

3. Modular Attack-Generation Scripts. We offer a Python-
based codebase that provides flexible scripts for creating
adversarial rewrites under user-controlled constraints. These
scripts enforce both token-edit budgets and semantic-similarity
checks, producing text manipulations that appear subtle
but can substantially affect ranking outcomes in retrieval-
augmented systems.

4. Precomputed Embeddings from Multiple Models. Each
poisoned variant is accompanied by vector representations
from three prominent embedding families: (i) OpenAI Em-
beddings (text-embedding-ada-002), (ii) Sentence Trans-
formers (e.g., all-MiniLM-L6-v2), and (iii) LLaMA-based
embeddings. Researchers can directly integrate these vec-
tors into retrieval pipelines or employ them to devise novel
detection and defense strategies.

5. End-to-End Evaluation Pipelines and Metrics.We pro-
vide standardized scripts to:
• Re-index items under poisoned or original metadata and
run a retrieval-then-generation pipeline,

• Quantify ranking shifts (e.g., via nDCG@𝑘), stealth (token-
edit ratios, embedding similarity), and popularity-based
effects, and

• Evaluate how multiple attack strategies scale or interact,
including broader system-level metrics such as global
nDCG degradation.

Overall, our experiments span:

4 (attack) × 2 (promote/demotion setting) × 3 (LLM type)

× 2 × 120 (tested users) ≈ 6000.

This results in thousands of distinct attacked text variants and
ranking evaluations, providing a rich environment for studying the
vulnerabilities and defenses of LLM-driven recommender systems.

2 Related Works and Resources
Although adversarial data poisoning for large language models
(LLMs) has gained considerable traction, most existing resources
have focused on question-answering or purely text-generation tasks
[15, 16, 21, 24]. Table 1 summarizes key prior works. Many of these
(e.g. [21, 24]) investigate trigger-based or knowledge corruption at-
tacks in RAG pipelines, but typically with question-answering (QA)
datasets like NQ, HotpotQA, orMS-MARCO. Only a handful [11, 12]
consider recommender systems explicitly, and several do not release
complete code or paired “original vs. attacked” item metadata.

By contrast, our proposed Poison-RAG resource is specifically
tailored for recommender systems using RAG. We provide:

• Paired original and attacked metadata (both short and
long text fields) one a real-world recommendation dataset
(MovieLens),

• Multiple rewriting styles (Emotional, Neighbor, Chain,
Trigger) and stealth constraints (10% or 40% token edits,
with semantic-similarity thresholds),

• Precomputed embeddings from three LLM families (Ope-
nAI, Sentence Transformers, LLaMA3),

• Modular code that allows researchers to reproduce or adapt
the attacks, measure ranking shifts, and evaluate stealth vs.
impact in a consistent manner.

In contrast to prior QA-focused poisoning, we emphasize stealthy
rewriting for promotion vs. demotion scenarios—unique to rec-
ommendation—and ensure all code/data are freely available for
future research.

3 Formal Description of LLM-Driven Textual
Poisoning Attacks

The overarching goal of our attacker model is to manipulate item
visibility in a RAG-based recommendation pipeline by rewriting
textual item descriptions. Specifically, a subset of items is chosen
from both the long-tail (unpopular) and short-head (popular) seg-
ments, aiming to promote the former (boosting exposure) or demote
the latter (reducing visibility).

Problem formulation. Formally, consider each targeted item
𝑖 ∈ 𝐼poison with an original description 𝐷𝑖 . We produce a new
description 𝐷𝑖 so that:

(i) The token-level alteration is bounded by 𝛿 , (e.g., at most 10% of
𝐷𝑖 is changed),

(ii) The rewritten text preserves a sufficiently high semantic simi-
larity (e.g., Sentence-BERT [13] cosine similarity above 0.80) to
remain inconspicuous.

The attacker’s objective is to maximize (in the promote case) or
minimize (in the demote case) the final ranking position or exposure
of item 𝑖 after the system reindexes or retrains on 𝐷𝑖 :

max
{𝐷𝑖 }

∑︁
𝑖∈𝐼poison

Δ
(
Exposure(𝑖)

)
subject to 𝐻

(
𝐷𝑖 , 𝐷𝑖

)
≤ 𝛿 |𝐷𝑖 |,

Sim
(
𝐷𝑖 , 𝐷𝑖

)
≥ 𝜎min .

(1)

Here, Δ(·) measures the rank shift for item 𝑖 (negative for demo-
tion, positive for promotion), 𝐻 (·) denotes a distance metric based
on token-level edits, and Sim(·) represents a semantic-similarity
measure (e.g., SBERT). The two constraints, 𝛿 and 𝜎min, enforce
stealthiness by limiting how extensively the text can change and
requiring that the rewritten description remain close in meaning
to the original.

In our setup, we particularly instruct an LLM (e.g., ChatGPT)
to make at most 10% token edits, measuring both the token-level
distance and the semantic-level similarity.

Attack Scenarios and Techniques.We design four major cate-
gories of textual attacks:

• Emotional Attack. The LLM replaces up to 𝛿 × |𝐷𝑖 | tokens with
sentiment-laden words (e.g., “exhilarating,” “lackluster,” “uplift-
ing”), thereby shifting the representation of the item in a way
intended to emphasize positivity (promotion) or negativity (de-
motion).



GENNEXT@SIGIR’25, July 13–18, 2025, Padua, Italy Nazary et al.

Table 1: Comparison of Relevant Textual-Poisoning Benchmarks in LLM/Recommender Settings. We distinguish them by:
Attack Vector, Target Sys., Datasets Used, Attack Output, Code & Data Availability, and Focus (e.g. QA, Recsys, Minimal-Edit
Constraints).

Refs. Attack Vector Target
System Datasets Used Attack Output Code/

Data? Notes / Focus

[11] Tag rewriting RAG Recsys MovieLens Poisoned tags Yes Minimal edits on tags; item-level rewriting
[21] Retrieval poisoning (triggers) RAG-LLM QA NQ, HotpotQA, MS-MARCO Modified text, trigger keywords No QA domain; triggers for LLM-based retrieval
[24] Knowledge corruption RAG-LLM QA NQ, HotpotQA, MS-MARCO Misinformation injection Yes Focus on “knowledge poisoning” in QA
[15] Malicious passage injection RAG-LLM QA NQ, HotpotQA, MS-MARCO Manipulated textual passages Yes Benchmark for adversarial poisoning in QA
[16] Malicious text injection RAG-LLM QA QA benchmarks (e.g. NQ) Poisoned response (LLM-based) No Detecting poisoning in RAG
[12] Prompt poisoning LLM-ICL Recsys ML1M, Taobao, LastFM Perturbed prompts No User prompts perturbations-ICL RecSys

[18] Text-simulation
-(LLM-Rewriting) ID-free Recsys Amazon (Beauty, Instr., Office) Poisoned item descriptions No LLM-generated text poisoning

- cold-start items
[22] Stealthy text perturbation LLM Recsys Amazon (Beauty, Toys, Sports) Manipulated item titles Yes Emphasis on minimal, stealthy changes

Ours Emotional/neighbor
chain/trigger RAG Recsys MovieLens (ML) Full attacked metadata Yes Focus on small-budget textual edits for

promotion/demotion

• Neighbor Borrowing. We identify 𝑛 neighbor items from the
opposite popularity class (popular neighbors for promoting a
long-tail target or vice versa). The LLM weaves short phrases,
keywords, or style cues from these neighbors into 𝐷𝑖 . This can
subtly “pull” the embedding of the target (them (victim) toward
the neighbor cluster. For instance, referencing “Oscar-winning
performances” borrowed from highly rated movies.

• Chain Attack.A combined approach that first applies emotional
sentiment injection and then interlaces references or phrases
from neighbor items in a second pass. While often more potent,
it also can risk higher detectability unless carefully balanced by
the semantic-similarity threshold.

• Trigger Attack. This is a nuance attack type, where the attacker
injects a specific trigger phrase (borrowed from a neighbor
item or a curated snippet) verbatim into the item description. The
phrase can be short or long, but it must be inserted exactly (i.e.,
no paraphrasing). The idea is to anchor the embeddings around
certain semantics—often borrowed from popular items (for pro-
motion) or negative-laden descriptors (for demotion).

Concrete Examples of Textual Poisoning Attacks Below, we
present concrete examples for each attack strategy. These examples
illustrate how minimal yet targeted textual modifications can ma-
nipulate item representations while maintaining (high) semantic
similarity with the original descriptions.
Original Description:

“Wings of Hope lifts spirits in trying times. Courage takes flight.”

Emotional Attack (Promote):
“Wings of Hope soars to uplift spirits in challenging times,
where courage takes exhilarating flight. Experience its invigo-
rating themes.”

Neighbor Borrowing (Promote):
“Wings of Hope lifts spirits in trying times. Inspired by Cy-
ber Love’s harmonious blend of technology and emotion, it
showcases boundless optimism. Courage takes flight.”

Chain Attack (Promote):

Merges emotive language (“exhilarating,” “uplifting”) and
references to popular neighbors: “Wings of Hope exhilarat-
ingly mirrors Cyber Love’s uplifting energy, soaring beyond
challenges in a bold flight of courage.”

Trigger Attack (Promote):
In this example, a specific trigger phrase is injected exactly as taken
from a curated snippet, thereby anchoring the embedding toward a
popular sentiment:

“Wings of Hope lifts spirits in trying times. Winner of multi-
ple Oscars, this film dazzled audiences worldwide with
its groundbreaking performance. Courage takes flight.”

4 Integration within RAG-based Recommender
Our RAG-based recommender system follows a two-stage pipeline
that combines an embedding-based retrievalmodulewith a language-
model-driven re-ranking or generation step (Figure 1). Below, we
provide further details about the pipeline architecture, how we
incorporate textually “poisoned” metadata into retrieval, and how
user profiles are computed.

4.1 Pipeline Architecture
The RAG pipeline consists of two primary components:

1. Retrieval: Each item in our catalog is represented by an em-
bedding vector computed from its textual description. The
retriever leverages an efficient 𝑘-nearest-neighbor search
(using cosine similarity) to rapidly identify a candidate set
of items that are semantically similar to a given user profile
or query. We experimented with two user proofing meth-
ods, averaging and temporal weighting methods to aggre-
gate item embeddings into user profiles, however, our final
experiments adopted the temporal variation approach (cf.
Section 4.1.1) as it provided better results.

2. LLM Augmentation and Generation: After candidate
items are retrieved based on their embedding similarities, the
LLM refines the recommendations by receiving a prompt that
includes the user profile (which may be generated manually
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or by the LLM itself) along with short textual snippets de-
scribing each candidate item. Leveraging its generative capa-
bilities, the LLM re-ranks the items—potentially incorporat-
ing additional contextual cues or producing an explanatory
narrative—before presenting the final recommendation list.
In our threat model, only the item descriptions are corrupted
by the attacker, causing both the retriever and, potentially,
the LLM re-ranker to behave suboptimally in favor of the
attacker’s objectives. We experimented with two augmenta-
tion methods (manual and LLM-generated, cf. Section 4.1.2)
to evaluate the impact of adversarial modifications.

4.1.1 User Profile Computation. All textual variants (original de-
scriptions vs. rewritten) are processed in batch to produce embed-
dings for each item. These vectors are then stored in a standard-
ized format, enabling the system to build a similarity index or run
nearest-neighbor queries in a standard manner.

For each textual description of the target victim items (whichmay
be attacked), we generate vector embeddings using one of several
LLM-based encoders: (i) OpenAI, (ii) Sentence Transformers, or (iii)
LLaMA3. For the User-level aggregation, we test both the average
embedding and a temporal approach, and ultimately selected the
temporal one as it provided better results.
• Temporal User-level Aggregation. We assign higher weights to
more recent items. For each item 𝑖 with timestamp 𝑡𝑖 , we compute
a logistic weight

𝑤𝑖 =
1

1 + 𝑒−𝛼 ( 𝑡𝑖−𝑡 )
,

where 𝑡 is the mean timestamp of that user’s items, and 𝛼 is a
small scaling factor (e.g., 0.001). The user embedding is then:

u =

∑
𝑖

(
𝑤𝑖 · e𝑖

)∑
𝑖 𝑤𝑖

,

with e𝑖 denoting the item embedding.

4.1.2 Augmentation Step: Manual vs. LLM-Based. During augmen-
tation, the LLM takes the representation of user interests (user
profile) and the set of retrieved items to generate and synthesize
the final recommendation list. We explore two methods to generate
this uesr profile:

(i) Manual: We compute a structured user profile (favorite
genres, top-rated items, etc.) from the training data. A simple
textual summary is created with a rule-based or heuristic
script (i.e., “manual”).

(ii) LLM-based:We feed the user’s historical items and prefer-
ences into a large language model (e.g., GPT-4) to generate a
more free-form textual description of that user’s tastes.

We experimented with average, and temporal weighting strate-
gies for embedding aggregation, visualized in Figure 2. Although
we show all three in the figure, our final experiments adopt the tem-
poral scheme to emphasize recent user interactions, as it yielded
better alignment between the user vector and the set of recent items
the user consumed. In Figure 2, each panel projects the items (blue
circles) and a single user embedding (red marker) into 2D via di-
mensionality reduction. Notice how the user vector position shifts
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Figure 2: Random vs. Temporal Aggregation during retrieval.
The average has also been tested but omitted due to space
constraints. Results are for OpenAI embedding.

under random vs. temporal aggregation methods, showcasing that
these embedding are indeed effective.

4.2 Reindexing for Integration of Textual
Attacks into Retrieval

To incorporate adversarial modifications (e.g., neighbor-borrowed
or trigger phrases), we treat each attacked description 𝐷𝑖 as the
legitimate metadata for item 𝑖 . The retrieval stage re-embeds all
items—including the attacked ones—using the chosen embedding
model. These subtle alterations, though minimal in token count,
can either promote the modified items or demote them. Once an
item’s description (original or attacked) is finalized, it is integrated
using one of three model families:

(a) OpenAI embeddings (e.g., text-embedding-ada-002),
(b) Sentence Transformers (e.g., all-MiniLM-L6-v2),
(c) LLaMA3-based encoders.

All items are re-embedded and re-indexed upon any change in
textual metadata. During inference, the system queries the index
with the user embedding u to retrieve the top-𝑁 candidate items.
An optional LLM generator may then re-rank or annotate these
candidates to produce the final recommendation output.

5 Experimental Setup
Dataset and Splitting. We use MovieLens (Latest) as the benchmark
dataset. We remove users with too few interactions (e.g., under 5).
We first perform a chronological train–test split at the user level:
for each user, the final 30% of interactions (by timestamp) become
the test set, while the remaining 70% form the training set. This
ensures that the training phase relies only on older interactions.
The dataset static are as follows, Total Interactions = 100836, |𝑈 | =
610, |𝐼 | = 9724, |𝑅 |/|𝑈 | = 165.30, |𝑅 |/|𝐼 | = 10.37, |𝑅 |/( |𝑈 | · |𝐼 |) =
0.0169996831. To speed up experiments, we evaluate the system
using 120 randomly selected users.

Popularity Splits. Items are labeled as head (popular), mid-tail, or
long-tail based on rating counts. Our promotion attacks target long-
tail items; our demotion attacks target head items.
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Implementation Details. We provide technical details on our experi-
mental setup and parameter choices:

• EmbeddingBaselines.WeexperimentwithOpenAI, Sentence-
Transformer, and LLaMA3 embeddings for items and user
profiles, re-indexing them using a 𝑘-NN library (FAISS or
Annoy).

• Token-Edit Ratios and Neighbor Size.We set the token-
edit ratio 𝛿 ∈ {0.1, 0.4}, defining the fraction of tokens that
can be replaced or inserted (i.e., 10% or 40%). The number of
neighbor items,𝑛, is fixed at {5, 10} for relevant strategies. To
maintain stealth, we enforce a semantic similarity threshold
(SBERT ≥ 0.80).

• Poisoning Integration. We apply four textual rewriting
strategies—emotional, neighbor, chain, and trigger—to se-
lected target items. For each attack, we recompute embed-
dings and evaluate retrieval performance against a baseline
with unaltered text.

Each textual modification is constrained to preserve semantic
similarity (above 0.8) while adhering to the 𝛿 budget.

Metrics. We measure:
• Recall@K and nDCG@K on the test set to reflect global ranking
performance,

• AvgRank(Attacked) and AttTopKRate as item-specific success
indicators,

All experiments are repeated for each embedding family Sentence
Transformer (ST), OpenAI, and LLaMA3.

Success Criteria for Attacks.
Demotion:
• AvgRank(Attacked) ↑: The average rank of the targeted
(attacked) item(s) becomes larger, indicating they are
pushed further down.

• AttTopKRate ↓: The fraction of times the attacked item
appears in the top-𝐾 recommendations decreases.

Promotion:
• AvgRank(Attacked) ↓: The average rank of the attacked
item(s) decreases, meaning they are pushed up the list.

• AttTopKRate ↑: The fraction of times the attacked item
is in the top-𝐾 increases.

Note that we also evaluate Recall@𝐾 , nDCG@𝐾 over all
items in the test set. A successful stealthy attack changes
the rank of target item (victim item) significantly but leaves
overall accuracy largely intact.

6 Benchmarkings Attack Outcomes
Experimental Research Questions. Throughout the course of exper-
iments, we seek to answer the following experimental research
questions.

• RQ1: LLM Vulnerability (Retrieval/Recommendation-
Focus). How susceptible are different LLM-based embeddings
(e.g., OpenAI vs. Sentence Transformers vs. LLaMA3) to mini-
mal textual rewrites?

• RQ2: Which Factors Drive Attack Success Across Pro-
motion and Demotion (Recommendation-Focus)? Do
certain rewriting styles—emotional, neighbor-based, chain, or
trigger—work reliably for both promotion and demotion, or
is their effectiveness scenario-specific?

• RQ3: Impact of 𝛿 . How do the fraction of edited tokens 𝛿
(e.g., 10% vs. 40%) affect final attack success and stealthiness?

• RQ4: Stealthiness. Do these minimal edits remain “under
the radar” in terms of semantic coherence and global metrics
(e.g., nDCG), and how do different rewriting styles compare in
terms of detectability?

In the following, we provide a detailed discussion of the benchmark
results and address the research questions (RQs) mentioned above.

6.1 RQ1: LLM Vulnerability/Resilience
We analyze all attacks under two main setups: demotion (pushing
a popular/head item down in ranking) and promotion (pushing a
long-tail item up). Tables 2 (demotion) and 3 (promotion) show the
retrieval-stage (left half) and recommendation-stage (right half)
performance of each LLM embedding (ST, OpenAI, LLaMA3). Please
note that the slash (/) in the recommendation stage refers to the
same metric performance under two different profiling methods
(manual profiling vs. LLM profiling), as discussed in Section 4.1.2.
The Original row represents the unattacked baseline.

6.1.1 Demotion Setting. We start by analyzing the result under the
demotion setting:
Sentence Transformers (ST). Retrieval Stage: Comparing Original
vs. Emotional, AvgRank moves from 24.8996 to 27.5803 (↑), and
AttTopKRate drops from 0.0082 to 0.0066 (↓), indicating a strong
demotion effect. Recommendation Stage: The Chain attack increases
AvgRank from 4.5104 to 4.6216 ↑, while reducingAttTopKRate from
0.0140 to 0.0138 (LLM-based profiling) (↓). These results suggest
that ST embeddings are susceptible to textual manipulations, and
that the impact on the final recommendations is notably more
tangible than that observed during retrieval.

OpenAI. Only the Chain attack successfully reduces AttTopKRate
in both the retrieval stage (from 0.0083 to 0.0066, ↓) and the recom-
mendation stage (from 0.0078 to 0.0068 ↓). However, most other
values in both stages remain unhighlighted, indicating that embed-
dings extracted from multi-billion-parameter LLMs exhibit greater
resilience against well-designed data poisoning attacks.

LLaMA3. Under the LLaMA3 setting, in the majority of the exper-
imental cases, attacks can easily penetrate the LLaMA3 embedding
space at both the retrieval and recommendation stages. For ex-
ample, Emotional, Chain, and Trigger exhibit strong penetration
effects, successfully demoting the target item across both key met-
rics—AvgRank and AttTopKRate.

A concrete instance from Table 2 illustrates this trend: the Trig-
ger attack increases AvgRank from 23.4119 (Original) to 29.5600
(↑) at retrieval, while simultaneously reducing AttTopKRate from
0.0116 to 0.0020 (↓). Similar patterns emerge at the recommenda-
tion stage, where Trigger, Emotional and Chain continue to push
the item down the ranking list.



A Resource for Studying Textual Poisoning Attacks against Embedding-based RAG in Recommender Systems GENNEXT@SIGIR’25, July 13–18, 2025, Padua, Italy

Table 2: Demotion Attack Evaluation. We label each metric with † if it meets “demotion success” compared to Original. For
demotion, “success” means lower for {AttTopKRate} and higher for {AvgRank}.

LLM Attack Strategy Retrieval Stage Recommendation Stage

Rec@N NDCG@N AvgRank AttTopKRate Rec@k NDCG@ AvgRank AttTopKRate

ST

Original 0.0771 0.1601 24.8996 0.0082 0.0803 / 0.0799 0.1611 / 0.1646 4.5104 / 5.1717 0.0136 / 0.0140
Emotional 0.0819 0.1730 27.5803↑ 0.0066↓ 0.0796 / 0.0780 0.1595 / 0.1705 5.5333↑ / 4.8333 0.0169 / 0.0153
Neighborhood 0.0813 0.1723 21.1823 0.0089 0.0726 / 0.0678 0.1653 / 0.1538 4.4390 / 4.1176 0.0116↓ / 0.0096↓
Chain 0.0791 0.1803 22.0764 0.0110 0.0758/ 0.0743 0.1585 / 0.1542 4.6216↑ / 4.3163 0.0157 / 0.0138↓
Trigger 0.0764 0.1617 25.8210↑ 0.0083 0.0799 / 0.0740 0.1693 / 0.1569 5.0179↑ / 4.7280 0.0158 / 0.0177

OpenAI

Original 0.0783 0.1974 25.3031 0.0083 0.0739 / 0.0791 0.1712 / 0.1673 5.8182 / 5.9500 0.0078 / 0.0085
Emotional 0.1014 0.2319 23.4269 0.0121 0.0927 / 0.0874 0.2009 / 0.1895 5.0761 / 4.9574 0.0130 / 0.0133
Neighborhood 0.0961 0.2202 25.2301 0.0105 0.0829 / 0.0799 0.1754 / 0.1735 5.6170 / 5.4220 0.0133 / 0.0154
Chain 0.1074 0.2113 22.9948 0.0066↓ 0.0961 / 0.0995 0.1960 / 0.1907 5.3750 / 5.5472 0.0068↓ / 0.0075↓
Trigger 0.0956 0.2155 25.8000↑ 0.0097 0.0798 / 0.0782 0.1880 / 0.1795 5.6420 / 5.2353 0.0114 / 0.0120

LLaMA3

Original 0.0365 0.0943 23.4119 0.0116 0.0377 / 0.0369 0.0865 / 0.0934 5.5789 / 5.1100 0.0161 / 0.0141
Emotional 0.0365 0.0849 26.1927↑ 0.0027↓ 0.0311 / 0.0362 0.0804 / 0.0918 5.3889 / 5.1667↑ 0.0025↓ / 0.0034↓
Neighborhood 0.0384 0.0970 22.7549 0.0154 0.0360 / 0.0418 0.0873 / 0.0943 5.6170↑ / 5.1579↑ 0.0195 / 0.0188
Chain 0.0321 0.0883 28.4615↑ 0.0013↓ 0.0316/ 0.0292 0.0854 / 0.0799 5.3500 / 5.0952 0.0028↓ / 0.0030↓
Trigger 0.0322 0.0789 29.5600↑ 0.0020↓ 0.0409 / 0.0371 0.0989 / 0.0945 4.2439 / 5.0208 0.0058↓ / 0.0068↓

Table 3: Promotion Attack Evaluation. A metric is labeled as success if it meets “promotion success” relative to Original:
(AvgRank ↓ and AttTopKRate ↑).

LLM Attack Strategy Retrieval Stage Recommendation Stage

Recall@N NDCG@N AvgRank AttTopKRate Recall@K NDCG@K AvgRank AttTopKRate

ST

Original 0.0771 0.1601 21.3742 0.0110 0.0776 / 0.0806 0.1621 / 0.1648 3.9412 / 3.5556 0.00373 / 0.00197
Emotional 0.0736 0.1729 31.3500 0.00175 0.0731 / 0.0702 0.1630 / 0.1695 7.2222 / 7.7500 0.00197 / 0.00175
Neighborhood 0.0949 0.1807 30.6441 0.00219 0.0825 / 0.0870 0.1593 / 0.1631 7.5000 / 8.2500 0.00088 / 0.00088
Chain 0.0776 0.1768 21.4462 0.01360↑ 0.0717 / 0.0751 0.1643 / 0.1633 5.1000 / 6.1000 0.00219 / 0.00219↑
Trigger 0.0830 0.1861 19.4254↓ 0.01272↑ 0.0945 / 0.0842 0.1953 / 0.1866 5.0588 / 4.9000 0.00373 / 0.00219↑

OpenAI

Original 0.0783 0.1974 28.0250 0.0026 0.0748 / 0.0778 0.1616 / 0.1691 6.0000 / 5.0000 0.0013 / 0.0004
Emotional 0.1020 0.2281 29.2778 0.0050↑ 0.1016 / 0.0926 0.2010 / 0.1830 6.0000 / 5.4444 0.0024↑ / 0.0020↑
Neighbor 0.1009 0.2217 28.8000 0.0044↑ 0.0894 / 0.0740 0.1958 / 0.1776 6.0000 / 5.0000 0.0015↑ / 0.0009↑
Chain 0.0888 0.2137 27.1538↓ 0.0057↑ 0.0825 / 0.0774 0.1879 / 0.1926 6.8000 / 7.0000 0.0011 / 0.0009↑
Trigger 0.1023 0.2075 28.9206 0.0018 0.0864 / 0.0872 0.1798 / 0.1791 7.8571 / 2.3333↓ 0.0015↑ / 0.0007↑

LLaMA3

Original 0.0365 0.0943 25.3415 0.0081 0.0367 / 0.0381 0.0882 / 0.0948 6.5652 / 6.0500 0.0050 / 0.0042
Emotional 0.0363 0.0960 21.6631↓ 0.0138↑ 0.0391 / 0.0409 0.0925 / 0.0955 4.5333↓ / 5.2857↓ 0.0033 / 0.0031
Neighbor 0.0323 0.0879 20.5404↓ 0.0180↑ 0.0325 / 0.0371 0.0861 / 0.0907 4.6154↓ / 4.7000↓ 0.0029 / 0.0022
Chain 0.0331 0.0893 21.9380↓ 0.0167↑ 0.0390 / 0.0350 0.0905 / 0.0920 4.5000↓ / 7.2727 0.0039 / 0.0024
Trigger 0.0337 0.0863 21.2742↓ 0.0211↑ 0.0371 / 0.0306 0.0908 / 0.0797 4.5000↓ / 4.7879↓ 0.0083↑ / 0.0072↑

Interestingly, the Neighborhood attack asymmetrically increases
AvgRank at the recommendation stage (from 5.5789 to 5.6170)
while other metrics at retrieval and recommendation stages re-
main worsened. This indicates that LLaMA3 embeddings are overall
highly penetrable, particularly to targeted phrase injections (e.g.,
Trigger, Chain, Emotion), rather than broad semantic drift from
neighboring text modifications.

6.1.2 Promotion Setting. Now we can process to analyze the result
under the promotion setting:

Sentence Transformers (ST). The Trigger attack is the most effec-
tive, reducingAvgRank from 21.3742 to 19.4254 (↓) and increasing

AttTopKRate from 0.0110 to 0.01272 (↑) at the retrieval stage. A
similar pattern is observed at the recommendation stage, where
AvgRank drops from 5.0000 to 2.3333 (↓) and AttTopKRate
increases from 0.0013 to 0.0015 (↑). The only other attack that
exhibits a similar directional effect is Chain, while the remaining
attacks fail to penetrate the ST embeddings effectively.

OpenAI. Surprisingly, under the promotion setting, the Neighbor,
Emotional, and Chain attacks significantly improve AttTopKRate,
increasing it from 0.0026 to 0.0050 (↑), 0.0044 (↑), and 0.0057 (↑),
respectively. These results are interesting and suggest that OpenAI
embeddings, which demonstrated strong resilience in the demotion
setting, are in fact vulnerable to multiple attack strategies in the
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promotion scenario. The assumption that OpenAI embeddings are
universally robust is therefore challenged, as OpenAI embedding
remains penetrable at both the retrieval and recommendation
stages under the promotion setting.

LLaMA3. Almost all examined attacks successfully penetrate
both the retrieval and recommendation stages, with Trigger be-
ing the most effective across all metrics. The only metric that ap-
pears more resistant isAttTopKRate at the recommendation stage,
which is only significantly impacted by the Trigger attack. How-
ever, across other metrics and at both retrieval and recommendation
stages, attacks consistently succeed in manipulating the ranking
outcomes.

6.2 RQ2: Which Factors Drive Attack Success?
(Recommendation-Stage Focus).

Having established in RQ1 that all attacks can penetrate retrieval
to varying degrees, we now zoom in on the recommendation stage
(the rightmost columns in Tables 2 and 3). Here, the LLM (ST vs.
OpenAI vs. LLaMA3) sees a short textual snippet describing each
of the top-𝑁 retrieved items and decides how to re-rank them.

6.2.1 Demotion at Recommendation Time. From Table 2 (right
columns), Chain is typically the most consistently potent approach
across all LLMs. For example, under ST, it raises AvgRank from
4.5104 up to 4.6216 or 5.5333 (depending on the run) and of-
ten cuts AttTopKRate as well. Under OpenAI, Chain also lowers
AttTopKRate (e.g., 0.0078→0.0068), whereas simpler approaches
(Emotional, Neighbor) can fail to reduce top-𝐾 presence. Finally, in
LLaMA3, Chain or Trigger produce the largest drop in AttTopKRate
increasing it from 0.0161 to ∼0.0058, and even ∼0.0028, although
this effect is mainly seen in AttTopKrate.

When we condition on the LLM, we see that OpenAI typically
needs the more “aggressive” synergy of negative sentiment and
borrowed references (Chain), whereas ST and LLaMA3 can be
demoted even via simpler Emotional or Trigger.

6.2.2 Promotion at Recommendation Time. Table 3 (right columns)
reveals that Trigger is a powerful tool for boosting visibility, es-
pecially when the goal is to push long-tail items higher in the rec-
ommendations. Specifically, Trigger tends to raise both AvgRank
while simultaneously increasing AttTopKRate under different LLMs,
including ST, OpenAI, and LLaMA3, as could be witnessed by high-
lighted colors.

By combining both promotion and demotion approaches, and
conditioning on LLM results, we obtain the following observations:
• ST and LLaMA3: Both Trigger and, to some extent, Chain
attacks effectively promote items, often achieving noticeable
improvements in the AvgRank and AttTopKRate metrics, for
both promotion and demotion.

• OpenAI: The Chain strategy, surprisingly, exhibits behavior
different from that in the demotion setting, proving effective
at the recommendation stage across various models.

6.3 RQ3: Effect of 𝛿 - Case Study of OpenAI
Figure 3 (top row) illustrates demotion results under two different
token-edit budgets: 𝛿 = 0.1 (orange bars) and 𝛿 = 0.4 (green bars),
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Figure 3: Comparison of the impact of 𝛿 on AvgRank and HR.

both with 𝑛 = 15. The left bar chart shows AvgRank (higher is
better for demotion), and the right bar chart showsHitRate (lower
is better).

Increasing 𝛿 from 0.1 to 0.4 notably strengthens the demotion
effect in both Emotional and Trigger attacks, pushing the item to a
higher average rank (further down the list). However, only Emo-
tional clearly reduces the items’ top-𝐾 presence (lower HitRate),
indicating it is more sensitive to textual edits. In contrast, Trig-
ger improves AvgRank with a larger 𝛿 , while its HitRate does not
always drop as sharply. Overall, Emotional attacks respond more
consistently to 𝛿 across both rank and HitRate, whereas Trigger
mainly affects average rank.

For promotion (with 𝛿 values of 0.1 vs. 0.4 and 𝑛 = 15, where
lower AvgRank and higher HitRate are better), variations in 𝛿 do not
dramatically affectAvgRank for somemethods. However, Chain and
Trigger show stronger shifts in HitRate, better pushing the item into
top-𝐾 recommendations. This indicates that while average rank
may remain stable, Chain and Trigger still boost overall visibility,
highlighting that different attack styles respond differently to the
token-edit budget in promotion settings.
6.4 RQ4: Stealthiness (Recommendation Stage

Only)
Below is a scenario-focused version of the color-coded table that
summarizes how each attack performs in stealth versus its impact
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on recommendation-stage rankings, note that these results
are derived from the combined impact of the attacks across both
accuracy and attack success metrics, and they are approximate. We
select a promotion scenario under different attacks to illustrate the
key fixes.

• We focus only on the right side (recommendation stage)
metrics (AvgRank, AttTopKRate);

• We color-code “High, Medium, Low” for both Stealthiness
and Ranking Impact, guided by the actual effect sizes seen
exclusively in the final recommendation step.

Table 4: A Color-Coded Summary of Stealth vs. Impact (Rec-
ommendation Stage Only, Example: Promotion).

Attack Type Stealthiness Promotion Impact
Emotional High Medium
Neighbor Medium Medium
Chain Medium High
Trigger Low High

Possible explanation of results :
• Emotional Attack: Typically retains overall textual flow
and rarely includes glaring extraneous phrases, so the Stealth-
iness is high. However, it shows only moderate improve-
ments in final top-𝐾 presence.

• Neighbor Attack: Borrowing from other items can be some-
what noticeable but remainsmoderate in stealthwhile achiev-
ing moderate rank gains.

• Chain Attack: Uses two-step rewrites (emotional + bor-
rowed) that produce large embedding shifts (High Impact)
but can be more suspicious (medium stealth).

• Trigger Attack: Hard-coded phrases (e.g., “Oscar-winning
performance”) are powerful for shifting embeddings, but
repeated triggers are easier to detect (Low Stealth).

• RQ1 (Model Vulnerability): All tested LLM-based
embeddings (ST, OpenAI, LLaMA) can be manipu-
lated by minimal textual edits. The degree of suscep-
tibility varies: LLaMA embeddings are often most
sensitive, while OpenAI can be more robust in de-
motion but not necessarily in promotion.

• RQ2 (Promotion vs. Demotion): Attack styles
matter. Chain often excels at demotion; Trigger or
Emotional can strongly boost promotion. Which sce-
nario is “easier” depends on the embedding model.

• RQ3 (Impact of 𝛿 and 𝑛): A higher token-edit frac-
tion (𝛿) could potnetially yield stronger rank shifts;
it also risk more conspicuous text changes. Attack-
ers can fine-tune these parameters to balance stealth
and effectiveness.

• RQ4 (Stealth): Because global ranking perfor-
mance is largely unaffected, these attacks remain
difficult to detect. Minor edits (small 𝛿) are quite
stealthy, but large rewrites or repeated neighbor
phrases may become more obvious.

Overall, these results highlight that retrieval-augmented rec-
ommender pipelines are vulnerable to subtle, LLM-driven textual
poisoning. Even with a small edit budget (e.g., 𝛿 = 0.1), attackers
can significantly alter an item’s ranking without noticeably harm-
ing systemwide metrics. Future work on textual anomaly detection
and robust embeddings is urgently needed.

7 Conclusion.
In this paper, we demonstrated how data poisoning attacks in the
form of minimal textual edits—constrained by a token-edit bud-
get and semantic-similarity threshold—can manipulate retrieval-
augmented recommenders (RAGs) that rely on textual embeddings,
in particular, LLM-generated embeddings. Our empirical results
across Sentence Transformers, OpenAI, and LLaMA3 models
showed that even a 10% modification of item descriptions can sig-
nificantly promote or demote the target item. Notably, the Emo-
tional and Trigger attacks often excel in promotion scenarios,
while Chain (combining neighbor borrowing and sentiment ed-
its) can effectively demote high-profile items. Despite these strong
shifts in individual ranks, system-wide metrics such as nDCG and
Recall remain largely unchanged or even increase—indicating the
stealthiness of these attacks.

This phenomenon underscores a key vulnerability: text-based
embedding systems can be subtly manipulated without sacrificing
global performance, making typical anomaly detectors—those that
rely on overall accuracy drops—ineffective. On the defense side,
practitioners may need to adopt textual provenance checks or train
robust embeddings that resist small but strategically placed edits.
By releasing our Poison-RAG benchmark with reproducible code,
paired original and attacked metadata, and precomputed embed-
dings, we hope to catalyze further research into detecting, mitigat-
ing, and ultimately preventing such stealthy, LLM-driven poisoning
threats in modern recommender systems.

7.1 Limitations and Future Works
Our experiments demonstrate that attacks can manipulate both
manual and LLM-generated user profiles, as reflected in the AttTop-
KRate and AvgRank metrics. However, we have not fully analyzed
how LLM-based profiling uniquely amplifies vulnerability to adver-
sarial or misleading user data—an area we will address in future
work, focusing on the interplay between profiling style, textual
attacks, and system resilience.

While our framework supports applying these four attacker
types to other datasets (e.g., LastFM), we report only MovieLens
results here due to space limits. Future work will extend our evalua-
tion to cross-domain vulnerabilities and assess the generalizability
of textual attacks. We also plan to investigate adversarial pertur-
bations generated via LLMs, using LLM-based agents [9]. Finally,
as outlined in [4], understanding failures and risks in generative
recommender systems remains a key avenue for further research
and mitigation.
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