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Abstract
Large LanguageModels (LLMs) havemade it possible for recommen-
dation systems to interact with users in open-ended conversational
interfaces. In order to personalize LLM responses, it is crucial to
elicit user preferences, especially when there is limited user history.
One way to get more information is to present clarifying questions
to the user. However, generating effective sequential clarifying
questions across various domains remains a challenge. To address
this, we introduce a novel approach for training LLMs to ask se-
quential questions that reveal user preferences. Our method follows
a two-stage process inspired by diffusion models. Starting from a
user profile, the forward process generates clarifying questions
to obtain answers and then removes those answers step by step,
serving as a way to add “noise” to the user profile. The reverse
process involves training a model to “denoise” the user profile by
learning to ask effective clarifying questions. Our results show that
our method significantly improves the LLM’s proficiency in asking
funnel questions and eliciting user preferences effectively.
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1 Introduction
Recommendation systems (RSs) have become essential tools for
making vast amounts of online content accessible to users. Such
systems typically leverage past interactions to learn about a user’s
preferences and improve their future recommendations. Neverthe-
less, in many cases, information about such preferences is lacking;
for example, with new users who have little interaction history, or
when privacy constraints limit the use of past interactions. Uncer-
tainty about current user preferences can also result from idiosyn-
cratic factors related to the current context (mood, social setting,
etc.). Rather than relying solely on passive observation of user be-
havior, an RS can employ preference elicitation (PE) techniques by
directly asking the user questions which may clarify their pref-
erences [16, 18, 23, 24, 26]. PE increases user agency by allowing
users to directly communicate their current needs and preferences
to the RS, thereby improving the quality of their recommendations.

With the rapid improvement and growing adoption of Large
Language Models (LLMs), it is now possible to augment RSs with
conversational interfaces, giving rise to Conversational Recommen-
dation Systems (CRS) [6, 11, 19–21, 31]. An important capability of
CRS is to perform PE by presenting elicitation questions to users
within a multi-turn dialogue. Through direct PE questions, the
system can clarify user needs and yield high-quality personalized
recommendations. Simple prompting techniques can direct the LLM
to ask elicitation questions whenever appropriate, but is this the
best we can do? In this paper, we study how to optimize LLMs to
ask high-quality elicitation questions.

Specifically, we propose a framework that starts from a user
profile which includes relevant information about the user in text
format. We process the user profile in two phases: a forward process
and a reverse process, inspired by diffusion models. Specifically, in
the forward process we begin by putting the profile information in
structured JSON format and ordering the information from most
specific to most general. We then generate an elicitation question
corresponding to each piece of information in the profile and in-
crementally remove information from the profile until we are left
with an empty user profile. This process is inspired by discrete dif-
fusion models [3, 25], where the input information is corrupted in
a forward process and then a model is trained to iteratively denoise
the intermediate data until a clean output is obtained in a reverse
process. We then fine-tune an LLM to ask elicitation questions in
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order to reconstruct the complete user profile, analogous to the
reverse process. Our framework is illustrated in Figure 1.

Our experiments demonstrate that this approach yields a highly
effective LLM for preference elicitation. Using our generated data,
we fine-tune the LLM to produce more effective elicitation ques-
tions, which in turn lead to improved reconstruction of the true
user profile. Furthermore, the model learns to ask funnel ques-
tions—starting with general concepts and gradually becoming more
specific as the conversation progresses.

2 Background
2.1 Text Generation
In the autoregressive paradigm for text generation, the probability
of an entire sequence 𝑠 = [𝑠0, 𝑠1, ..., 𝑠𝑁 ] can be modeled as the
product of the conditional probabilities of predicting each token in
the sequence from left to right. Mathematically, this is expressed as
[4]:

𝑃 (𝑆) =
𝑁∏
𝑖=0

𝑝 (𝑠𝑡 |𝑠0, 𝑠1, . . . , 𝑠𝑡−1) (1)

where 𝑝 (𝑠𝑡 |𝑠0, 𝑠1, . . . , 𝑠𝑡−1) represents the conditional probability of
generating the token 𝑠𝑡 given all the preceding tokens 𝑠0, 𝑠1, ..., 𝑠𝑡−1.

2.2 Profiling Process
Let 𝑃 = (𝑃0, 𝑃1, . . . , 𝑃𝑛) represent a series of 𝑛 versions of a profile
containing user information gathered over time, where 𝑃0, 𝑃𝑖 , and
𝑃𝑛 denote the initial, intermediate (at timestep 𝑖), and final versions
of the profile, respectively. We can model the probability of this
series of profile versions occurring consecutively as follows:

𝑝 (𝑃) =
𝑛∏
𝑖=0

𝑝 (𝑃𝑖 |𝑃0, . . . , 𝑃𝑖−1) . (2)

2.3 Diffusion Models
We see a connection between profiling processes and diffusion mod-
els [12, 28]. In computer vision, diffusion models work by starting
with a noisy image and gradually refining it until it becomes clear
and complete. Continuous diffusion models are often trained by
modeling a Markov chain 𝑥𝑇 , . . . , 𝑥𝑡 , . . . , 𝑥0, where 𝑥0 represents
the original image and 𝑥𝑇 corresponds to pure Gaussian noise. This
chain is generated by progressively adding Gaussian noise to 𝑥𝑡 to
obtain 𝑥𝑡+1, a process known as the forward or corruption process.
A model parameterized by 𝑝𝜃 is then trained to reverse this process,
effectively “denoising” 𝑥𝑡+1 back to 𝑥𝑡 , thereby reconstructing the
original input from noisy representations.

We formulate user preference profiling as analogous to a discrete
diffusion process, often used in text generation. In such processes,
a basic or null state is iteratively refined into a complete output.
Our model adopts this concept (see Figure 1): we start with "noisy"
(initially empty) user profiles and refine them incrementally by
asking relevant questions, leading to a more precise understanding
of user preferences.

3 Proposed Model
Our goal is to optimize an LLM to ask good clarifying questions.
Taking inspiration from diffusion models in discrete spaces [25], we

start from a complete (textual) profile and gradually remove infor-
mation from the profile in a forward process until it is empty, akin
to corrupting the profile. We use an LLM to generate an elicitation
question that would reveal the information being removed from
the profile in each forward step. We then apply a reverse process
that maps a partial profile at time step 𝑡 to the elicitation question
corresponding to the next piece of information from the profile.
We hypothesize that an LLM trained using the reverse process can
ask good clarifying questions based on partial information about
the user. The order of the elicitation questions plays an important
role in the flow of the conversation. Importantly, we want to ask
more general questions (e.g., “what is your favorite genre?") before
asking more specific questions (e.g., “do you like artist X?"). To this
end we use an LLM to order the information in the user profile
from least general to most general in the forward pass, so that in
the reverse pass we get the desired funneling effect.

For evaluation, we train another LLM to simulate the user’s
responses to the generated elicitation questions. The user model
is given the full ground-truth user profile and generates replies
to elicitation questions according to the profile (it also leaves a
question unanswered if the profile does not contain information
related to the question). We use this model to evaluate our approach
by generating sessions where the PE model (trained in the reverse
process) interacts with the simulator, and compare the resulting
profile to the ground-truth profile.

In the next subsection, we next formulate the problem, starting
with the Reverse process. Then, in the Forward process, we explain
how to generate training data for the Questioner and user simulator.

3.1 Profile Reconstruction by Asking Questions
Our generative process is trained using the Sequential Question
Answering (SQN) process. Particularly, in SQN, the objective is to
find appropriate questions to transform an initial empty user profile
𝑃0 = ∅ into a final ground-truth profile 𝑃𝑛 through a sequence of
intermediate profiles 𝑃1, . . . , 𝑃𝑛−1. Each profile 𝑃𝑡 represents the
state after 𝑡 question-answer interactions and is defined as the set
of collected pairs accumulated up to that point: 𝑃𝑡 = {(𝑄𝑖 , 𝐴𝑖 )}𝑡−1𝑖=0 .
That is, given a potentially corrupted or partial profile 𝑃𝑡 (where
𝑡 < 𝑛), our goal is to learn the generative process by which the
complete profile 𝑃𝑛 is formed.

Using the chain rule and assuming conditional independence,
we have:

𝑝𝜃,𝜙 (𝑃𝑛) =
𝑛∏
𝑡=1

𝑝 (𝑃𝑡 |𝑃𝑡−1;𝜃, 𝜙) (3)

The probability 𝑝 (𝑃𝑡 | 𝑃𝑡−1;𝜃, 𝜙) is expressed as a function of
three components:

𝑝 (𝑃𝑡 | 𝑃𝑡−1;𝜃, 𝜙) = 𝑝𝜃 (𝑄𝑡−1 | 𝑃𝑡−1)
× 𝑝𝜙 (𝐴𝑡−1 | 𝑄𝑡−1, 𝑃𝑡−1)
× 𝑝 (𝑃𝑡 | 𝑃𝑡−1, 𝑄𝑡−1, 𝐴𝑡−1)

(4)

where:

• 𝑝𝜃 (𝑄𝑡−1 | 𝑃𝑡−1) is the probability of generating the question
𝑄𝑡−1 given the partial profile 𝑃𝑡−1, parameterized by 𝜃 . This
reflects the process of the Questioner.
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Figure 1: Our model for addressing corrupted user profiles and reconstruction through clarifying questions.

• 𝑝𝜙 (𝐴𝑡−1 | 𝑄𝑡−1, 𝑃𝑡−1) is the probability of providing the
answer 𝐴𝑡−1 to the question 𝑄𝑡−1, given the question 𝑄𝑡−1
and the partial profile 𝑃𝑡−1, parameterized by 𝜙 . This reflects
the answerer’s response (i.e., user simulator).
• 𝑝 (𝑃𝑡 | 𝑃𝑡−1, 𝑄𝑡−1, 𝐴𝑡−1) is the probability of generating the
next state 𝑃𝑡 given the previous state 𝑃𝑡−1, the question𝑄𝑡−1,
and the answer 𝐴𝑡−1. This component is deterministic and
does not have any learnable parameters, it can be expressed
as:

𝑝 (𝑃𝑡 |𝑃𝑡−1,𝑄𝑡−1,𝐴𝑡−1 )=

{
1 if 𝑃𝑡=𝑃𝑡−1∪{ (𝑄𝑡−1,𝐴𝑡−1 ) }

0 otherwise
(5)

This probability is 1 if the new profile 𝑃𝑡 is obtained by
adding the question 𝑄𝑡−1 and answer 𝐴𝑡−1 to the previous
profile 𝑃𝑡−1. Otherwise, it is 0.

Note that updating the profile by adding answers alone is possi-
ble, but our experiments show that including questions along with
answers in user profiles helps the model avoid repetitive queries
and improves its performance. It also allows using simple yes/no
answers.

Our objective is to maximize the probability of generating the
complete user profile by asking effective clarifying questions which
can be formalized as follows:

max
𝜃,𝜙

|𝐼 |∑︁
𝑖=1

log(𝑝𝜃,𝜙 (𝑃𝑖𝑛)) , (6)

where 𝑃𝑖𝑛 is the complete profile of user 𝑖 , and |𝐼 | is the number of
users. We optimize this objective by fine-tuning two LLMs: one as
a questioner and another as a user simulator to answer questions
generated by the Questioner. Note that we could have used a pre-
trained user simulator, however we have found that fine-tuning the
simulator significantly improves the results.

3.2 Profile Corruption
In the forward process, we are given a text representation of the
information 𝑃𝑢 of user 𝑢 (e.g., preferred movie genres or movies
previously watched and their descriptions). Our goal is to gradu-
ally add noise until the profile contains no information. Common
operations for adding noise in such discrete spaces include insert-
ing, deleting, and replacing words [25]. In this work, we focus on

deletion. We propose to ask a clarifying question at each step based
on the partial user profile and then remove the answered portion
from the user profile.

Given information in text format 𝑃𝑢 from user𝑢, we first convert
this information into a structured format (e.g., JSON) to create a
structural user profile. This conversion allows us to use structured
tags and values, enabling the efficient querying and manipulation
of profile data and simplifying operations in subsequent processes.
We can generate these structured formats of user profiles using an
LLM: 𝐽𝑃𝑢 := LLM(𝑃𝑢 ).

Given 𝐽𝑃𝑢 , we now aim to generate questions in the forward
process and create partial profiles. The generation of questions can
vary, but we adhere to the following two constraints:

(1) In the reverse process, questions are asked starting from the
easier and more straightforward ones, progressing to more
specific questions.

(2) We consider dependencies between questions. If there is a
dependency, we first ask about broader aspects before more
specific ones. For example, in movie recommendations, we
first inquire about the movie genre before asking about more
specific preferences, such as sub-genres or favorite directors.

We examine different approaches for generating questions from
user profiles. We found that ranking the tags in the JSON user
profile based on the notion of generality and then prompting the
LLM to generate funnel Questions, which start from more general
questions and gradually proceed to more fine-grained ones, yields
the best results in terms of satisfying the constraints.

Specifically, let 𝐽𝑃𝑢 = {(𝑡𝑖 , 𝑐𝑖 )}𝑚𝑖=1 be the structured profile,
with tags 𝑡1, . . . , 𝑡𝑚 and the corresponding information content
𝑐1, . . . , 𝑐𝑚 . For example, in the movie domain, we can have 𝑡𝑖 =

’Genre’, 𝑐𝑖 = ’The user likes action movies’. We first use
an LLM to rank the tags from general to specific. We then use
the tag ranking to generate questions using a specific prompt:
(𝑄0, 𝐴0), . . . , (𝑄𝑛−1, 𝐴𝑛−1) = LLM(𝐽𝑃𝑢 , {𝑡1, 𝑡2, 𝑡3, . . . , 𝑡𝑚}), where
𝑄𝑖 denotes the generated question, and 𝐴𝑖 denotes its correspond-
ing answer derived from the user profile (e.g., 𝑄𝑖 =’Do you like
action movies?’, 𝐴𝑖 = ’yes’). Crucially, we define a mapping
T (𝑄𝑖 , 𝐴𝑖 ) that identifies the set of tag-content pairs from the origi-
nal profile 𝐽𝑃𝑢 which are directly addressed or answered by ques-
tion 𝑄𝑖 and answer 𝐴𝑖 . Formally, T (𝑄𝑖 , 𝐴𝑖 ) = {(𝑡𝑘 , 𝑐𝑘 ) ∈ 𝐽𝑃𝑢 |
(𝑡𝑘 , 𝑐𝑘 ) is addressed by 𝑄𝑖 , 𝐴𝑖 }. For example, for𝑄𝑖=’Do you like
action movies?’ and 𝐴𝑖 = ’yes’, T (𝑄𝑖 , 𝐴𝑖 ) might correspond
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to {(’Genre’, ’The user likes action movies’)} or poten-
tially multiple related pairs if the question covers more ground. To
simplify the notation, we sometimes denote T𝑖 = T (𝑄𝑖 , 𝐴𝑖 ).

Since we generate questions in a funnel-like manner, the ques-
tions 𝑄𝑖 are ordered such that they start from broad concepts (e.g.,
𝑄0) and progress to more detailed questions (e.g., 𝑄𝑛−1). Here, 𝑛
represents the total number of questions generated for the user
profile to gather as much information as possible. Note that the
number of tags𝑚 and the number of questions 𝑛 can differ. The
LLMmay generate multiple questions about a single tag or generate
questions that address multiple tags simultaneously.

Based on the generated questions, we need to create data through
the forward process and then utilize it in the reverse process. Since
the questions are generated in a funnel manner, question𝑄0 is more
general compared to question 𝑄𝑛−1 in the forward process. There-
fore, in the forward process, we begin with 𝑄𝑛−1, assuming the
user profile is complete. Subsequently, we remove the information
corresponding to the answer to this question 𝑄𝑛−1 from the user
profile. This process continues, removing the information related
to each question’s answer until the user profile is empty.

Formally, the partial user profile at step can be represented as
follows:

𝐽𝑃𝑢𝑡 = 𝐽𝑃𝑢 \
𝑛−1⋃
𝑖=𝑡

T𝑖 (7)

where 𝑡 ranges from 𝑛 (representing the full profile, as the union is
empty) down to 0 (representing the empty profile, as information
from all questions 𝑄0 ..𝑄𝑛−1 has been removed). Here, 𝐽𝑃𝑢𝑡 denotes
the partial user profile available just before asking question 𝑄𝑡 (or
at the end if 𝑡 = 𝑛), and 𝐽𝑃𝑢 = 𝐽𝑃𝑢𝑛 is the complete initial user
profile. Note that 𝐽𝑃𝑢0 = ∅.

So, by using the partial user profiles 𝐽𝑃𝑢𝑡 , the data that we can
use in the reverse process for user 𝑢 to train the model would be:

𝐷𝑢 = {(𝑄𝑛−1, 𝐽𝑃𝑢𝑛−1), (𝑄𝑛−2, 𝐽𝑃𝑢𝑛−2), . . . , (𝑄0, 𝐽𝑃
𝑢
0 )}. (8)

Here, each pair (𝑄𝑖 , 𝐽𝑃
𝑢
𝑡 ) represents a training instance where,

given the partial user profile 𝐽𝑃𝑢𝑡 as input, the model should gener-
ate the corresponding question 𝑄𝑖 as the target.

Let’s consider 𝐼 = {𝑢1, 𝑢2, . . . , 𝑢 |𝐼 | } as the set of all users. After
generating Funnel questions for all user profiles, the data for the
reverse process is:

𝐷 = {𝐷𝑢1 , 𝐷𝑢2 , . . . , 𝐷𝑢 |𝐼 | }. (9)

We use this data for fine-tuning the Questioner. The forward process
is summarized in Algorithm 1.

3.2.1 User Simulation. Evaluating our approach requires an en-
vironment where our ‘Questioner’ model interacts with a ‘user
simulator’ that answers questions based on specific user prefer-
ences. Creating such an environment for research is challenging.
Even on platforms with millions of users, launching a dialogue
system without extensive training for real users may fail [7, 14].

To address this problem, a common practice is to use LLMs as
simulated users due to their ability to answer questions effectively.
Therefore, in each conversation between our Questioner and user
simulator, we provide the user profile to the LLM and ask it to
find the answer from the profile if possible, that is, 𝐴 = 𝐿𝐿𝑀 (𝑃,𝑄).
Otherwise, we instruct the LLM to respond with “I don’t know”

Algorithm 1 Forward process: Profile Corruption
Input: A user profile 𝑃𝑢 in text format.
Output: Training data 𝐷𝑢 , comprising question-partial user
profile pairs for various partial profiles.
1: Convert 𝑃𝑢 into a JSON format 𝐽𝑃𝑢 .
2: Sort tags {𝑡1, 𝑡2, . . . , 𝑡𝑚} from 𝐽𝑃𝑢 based on notion of generality.

3: Generate Funnel Questions
{(𝑄0, 𝐴0), (𝑄1, 𝐴1), . . . , (𝑄𝑛−1, 𝐴𝑛−1)} based on the ex-
tracted tags.

4: 𝑡 ← 𝑛 − 1
5: while 𝑡 ≥ 0 do
6: Create partial profile 𝐽𝑃𝑢𝑡 by using Equation (7).
7: 𝐷𝑢 ← 𝐷𝑢 ∪ {(𝑄𝑡 , 𝐽𝑃

𝑢𝑡 )}
8: 𝑡 ← 𝑡 − 1
9: end while
10:
11: return 𝐷𝑢

in cases where the answers are not present in the user profile,
assuming that the user does not have specific preferences regarding
the asked question.

To enhance the ability of the LLM to answer questions more effec-
tively, we fine-tune it using the data generated in profile corruption
as follows:

�̂�𝑢 ={(T𝑛−1, 𝑄𝑛−1, 𝐽𝑃𝑢 ), (T𝑛−2, 𝑄𝑛−2, 𝐽𝑃𝑢 ),
. . . , (T0, 𝑄0, 𝐽𝑃

𝑢 )}
(10)

Each tuple (T𝑖 , 𝑄𝑖 , 𝐽𝑃
𝑢 ) serves as a training instance for fine-tuning

the user simulator. In other words, given the question 𝑄𝑖 and the
user profile 𝐽𝑃𝑢 , the model should find the corresponding answers
𝐴𝑖 (chain-of-thought) and mapping T𝑖 (response output) as the
target. An example illustrating the full process is shown in Figure 2.

4 Experiments
We use Movielens, a movie recommendation dataset widely used
in research related to recommender systems [10]. Throughout our
experiments, we use the user profiles from Jeong et al. [15], Ten-
nenholtz et al. [29, 30]. These ground-truth profiles were generated
using an LLM and the complete raw history of ratings from each
user. The user-profiles were evaluated to be predictive of user rat-
ings in the dataset (see [30] for more information).

We use the Gemma LLM (7B version) [9] with 28 layers as our
Questioner and user simulator (in the reverse process and for fine-
tuning) because its weights are publicly available and it has been
shown to be one of the best models for its size.

For generating data in the Forward process, we use Gemini 2.0
[8], which is a larger LLM with greater capability, to ensure that
the generated training data for fine-tuning is of high quality. For
fine-tuning, we use Parameter-Efficient Fine-Tuning (PEFT) in our
experiments and apply Low-Rank Adaptation (LoRA) [13] in all our
experiments. For training our models, we fix the batch size to 64
and the learning rate to 0.001.
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Figure 2: An example of our framework for user profile processing. Starting from a complete user profile in textual form, the
forward process converts it into structured JSON and sequentially generates elicitation questions while progressively removing
information. The reverse process then reconstructs the profile by iteratively answering the elicitation questions

(a) (b)

Figure 3: (a) BLEU and ROUGE scores for four models, showing the performance of the non-fine-tuned and fine-tuned
Questioners with different user simulators. (b) Percentage of unanswered questions for models.

4.1 Evaluation Process
For evaluating the generated questions and their quality, we use
our fine-tuned Questioner in an interaction with a user simulator,
starting with an empty profile. In each turn of the interaction, the
Questioner asks a clarifying question, and the user simulator tries
to answer the question given the target (ground-truth) user profile.
If the user simulator finds the answer to the question in the user
profile, we add it to the current user profile and use it in the next
turn; otherwise, we set the answer to the question as “No Preference.”
This process will continue until the number of questions exceeds a

limit (10 questions) or the current user profile matches the target
profile. Finally, we compare the generated user profile to the target
profile and evaluate it. To measure the quality of the generated
questions, we compare the generated profile to the ground-truth
profile using the ROUGE and BLEU metrics. Algorithm 2 shows the
evaluation process.
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Figure 4: BLEU (left) and ROUGE (right) scores vs. number of questions.

(a) Comparing the overall performance of models by integrating questions
and answers (Q-H) into user profiles.

(b) Percentage of repetitive questions

Figure 5: Effect of adding questions along with answers to partial user profiles

4.2 Results and Analysis
4.2.1 Effect of fine tuning. We first compare our fine-tuned Gemma
model in the reverse process, using the data generated in the for-
ward process, with a non-fine-tuned Gemma model to evaluate the
quality of the generated questions in both models. We also use a
non-fine-tuned Gemini model as a user simulator to compare it
with our fine-tuned Gemma user simulator.

The results of this experiment are shown in Figure 3(a). To ob-
serve the effect of the fine-tuning process for the Questioner, we
can compare ’non-finetuned questions’ and ’finetuned questions’
bars in Figure 3(a). The results show that fine-tuning the model
with the generated data can significantly improve its performance
(Rouge from 0.4 to 0.68 and Bleu from 0.28 to 0.49, with finetuned
simulation). This shows that the fine-tuned Questioner is able to ask

more effective sequential questions to capture personal information
from the user and create the user profile. Similarly, we can observe
the same results in the first and third bars, where the simulator is a
non-fine-tuned Gemini model instead of a fine-tuned Gemma.

Specifically, we fine-tuned the user simulator to answer the
questions more effectively. To compare the results, we can examine
the third and fourth bars (or similarly, the first and second bars) in
Figure 3(a). The results show that the fine-tuned user simulator can
answer questions more effectively compared to the non-fine-tuned
Gemini model. Note that for fine-tuning the user simulator, we used
Gemma, which is a much smaller model compared to Gemini.

To further analyze these results, we present the percentage of
unanswered questions (where the simulator is unable to find the
answers in the profile) for four models, as shown in Figure 3(b). This
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Algorithm 2 Evaluation Process

Input: A corrupted profile 𝑃𝑡 , target profile 𝑃𝑛 , parameters 𝜃, 𝜙 ,
maximum question number 𝑇
Output: A sequence of questions and answers that transforms 𝑃𝑡
to 𝑃𝑛
1: Initialize profiles: 𝑃current ← 𝑃𝑡
2: Initialize question count: count← 0
3: while (𝑃current ≠ 𝑃𝑛) and (count < 𝑇 ) do
4: Generate question 𝑄t-1 using the fine-tuned model as the

Questioner
5: Query the user simulator model, which accesses the target

profile 𝑃𝑛 to determine an answer 𝐴t-1:
6: if answer is found in 𝑃𝑛 then
7: Set 𝐴t-1 to the corresponding value in 𝑃𝑛
8: else
9: Set 𝐴t-1 to “No Preference"
10: end if
11: Update:
12: 𝑃current ← 𝑃current ∪ {(𝑄t-1, 𝐴t-1)}
13: Increment question count: count← count + 1
14: end while
15:
16: return 𝑃current

Figure 6: BLEU and ROUGE scores of the Questioner model
at different fine-tuning steps (0, 4000, 28000, and 40000)

figure shows that the fine-tuned user simulator is able to answer
questions from both the non-fine-tuned and fine-tuned Questioners
more effectively. In contrast, using the non-fine-tuned Gemini as a
user simulator sometimes leads to unanswered questions, which
can negatively impact the performance of the Questioner. This
highlights the importance of the user simulator interacting with
the Questioner.

4.2.2 Effect of Number of Questions. To illustrate the effect of the
number of questions on BLEU and ROUGE scores across differ-
ent approaches, we present these scores with varying numbers
of questions in Figure 4. We compare two types of Questioners:

fine-tuned and non-fine-tuned models, as well as two types of sim-
ulators: Gemini and fine-tuned simulator. The worst-performing
model for asking clarifying questions and answering them is the
non-fine-tuned Questioner with the Gemini simulator. This poor
performance is due to two factors: the Questioner cannot ask effec-
tive questions, and the Gemini simulator is unable to find relevant
answers in the user profile. However, by replacing the Gemini sim-
ulator with a fine-tuned simulator (represented by the orange line),
we observe a performance boost. This indicates that while some of
the questions asked by the non-fine-tuned model are effective, their
effectiveness is enhanced when answered by a fine-tuned simulator.

By using the Gemini simulator with a fine-tuned Questioner
(represented by the green line), we observe a performance boost
compared to the non-fine-tuned Questioner with the Gemini simula-
tor. This highlights the effect of fine-tuning the Questioner, enabling
it to ask more effective clarifying questions.

The figure demonstrates that our best model (i.e., the fine-tuned
Questioner paired with the fine-tuned simulator) excels by asking
questions that gather broader information during the initial five
turns (up to turn 5), then shifts toward asking more specific and
detailed questions in the later turns (turns 6 or 7).

4.2.3 Effect of Adding Question History. In updating the user pro-
file, we either add only the answers to the questions or include both
the questions and their answers. In our experiments, we found that
adding questions along with answers (see Equation (5)) can help
the model avoid asking repetitive questions.

Figure 5 shows the results of this experiment. In this experiment,
we added questions along with answers in both non-fine-tuned
and fine-tuned Questioners. In our experiments, we observe that
adding question history can increase performance in a fine-tuned
model but decrease it in a non-fine-tuned model. As mentioned
above, adding question history to the partial user profile helps the
model ask non-repetitive questions. In the fine-tuned model, this
can help the model ask non-repetitive and effective questions in
the next turns. However, this can reduce the performance of the
non-fine-tuned model since it starts to ask non-repetitive questions,
but the new questions are not effective because the model is not
trained to ask effective questions to reveal user preferences in a
sequential manner.

4.2.4 Impact of Fine-Tuning Steps on Model Performance. To see
the effect of fine-tuning steps on the training of the Questioner,
we present the BLEU and ROUGE scores in Figure 6. In this figure,
we show the performance of our Questioner without fine-tuning,
as well as with 4000, 28000, and 40000 steps. According to this
figure, fine-tuning the model with more steps helps it to ask better
follow-up questions, which is the goal of the Questioner.

4.2.5 Analyzing the Questions Asked by the Model. Our aim in
fine-tuning the Questioner to generate follow-up questions was
to create a funnel format that aligns more closely with human-
like conversation flow. Our training strategy, discussed above, also
involved generating funnel questions and removing information
from the user profile based on these questions.

To determine whether the model is asking questions in a funnel
format, we analyze the concept of each question (i.e., keywords
in the JSON format of user profiles) within a conversation and
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Figure 7: Weighted ranks (WR) of conversation concepts across question positions, illustrating the distribution of each concept
within a funnel format. Lower WR values indicate concepts commonly addressed earlier in the conversation, while higher WR
values correspond to concepts typically addressed later.

calculate an expected value (or weighted rank) for each concept.
This approach helps identify the order in which specific concepts
are most likely to appear across conversations. The weighted rank
(WR) for each concept is calculated as follows:

𝑊𝑅 =

𝑇∑︁
𝑖=1

𝑖 × 𝑝 (𝑖) (11)

where 𝑇 is the maximum number of questions the model can ask,
and 𝑝 (.) is the probability that the concept appears in position 𝑖 .

The results of this experiment are shown in Figure 7. According
to this figure, the Questioner begins by asking broader concepts
such as ‘Genre’, ‘Film Era’, and ‘Decade’, gradually shifting to more
specific questions like ‘Directors’, ‘Visual Style’, and ‘Tone’, and
eventually concluding with highly detailed questions, such as ‘Spe-
cial Effects’, ‘Humor’, and ‘Atmosphere’. This progression suggests
that the Questioner aims to start with broad concepts earlier in the
conversation, then moves to more detailed questions as the con-
versation progresses, which is consistent with our data generation
process.

5 Related work
Preference elicitation in conversational recommender systems plays
a crucial role in quickly understanding user preferences and deliver-
ing tailored recommendations [5]. Recent research has focused on
eliciting human preferences using language models (LMs) through
various approaches. Li et al. [17] introduced Generative Active
Task Elicitation (GATE), a framework where models interact with
users through free-form language to infer intended behavior. One
interesting approach to enhancing language models involves teach-
ing them to ask clarifying questions. This approach, known as
STaR-GATE, aims to improve the performance of language mod-
els by enabling them to seek additional information when faced
with ambiguity or uncertainty in a given task [1]. [2] introduced
a framework for Bayesian optimization with LLM-based acqui-
sition functions for natural language preference elicitation. The
framework, demonstrated in the PEBOL (Preference Elicitation
with Bayesian Optimization augmented LLMs) algorithm, utilizes
Natural Language Inference (NLI) and Bayesian Optimization (BO)
strategies, such as Thompson Sampling (TS) and Upper Confidence
Bound (UCB), to steer LLM query generation. [22] presents an
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algorithm for active preference inference using language models
and probabilistic reasoning. By prompting instruction-tuned large
language models with informative questions, the algorithm aims
to enhance the ability of language models to quickly infer user
preferences, transforming them into more interactive systems. [27]
has explored intent classification through manual annotation and
supervised learning, but these approaches often struggle to scale
or adapt to the evolving nature of user interactions, especially in
conversational AI settings.

6 Conclusions
We propose a novel model inspired by diffusion techniques to en-
hance large language models (LLMs) in generating funnel questions
that effectively capture user preferences across various domains.
Our approach involves introducing noise into user profiles and
training the model to denoise them by generating relevant ques-
tions. Experimental results demonstrate significant improvements
in the ability of LLMs to produce domain-specific, contextually ap-
propriate follow-up questions. We believe our model can advance
personalized user interactions and open new avenues for adaptive
learning in LLMs.
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