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Abstract
Multi-hop question answering (QA) requires models to retrieve and
reason overmultiple pieces of evidence.While Retrieval-Augmented
Generation (RAG) has made progress in this area, existing methods
often suffer from two key limitations: (1) fixed or overly frequent
retrieval steps, and (2) ineffective use of previously retrieved knowl-
edge. We propose MIND (Memory-Informed and INteractive Dy-
namic RAG), a framework that addresses these challenges through:
(i) prompt-based entity extraction to identify reasoning-relevant
elements, (ii) dynamic retrieval triggering based on token-level en-
tropy and attention signals, and (iii) memory-aware filtering, which
stores high-confidence facts across reasoning steps to enable consis-
tent multi-hop generation.https://github.com/JoyDajunSpaceCraft/
MIND.git.
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1 Introduction
Recent advances in large language models (LLMs) have significantly
improved the performance of open-domain question answering
(QA) systems, particularly when augmented with external knowl-
edge retrieval [3, 8, 12, 15, 16, 31, 33]. However, many real-world
questions require multi-hop reasoning—a process of sequentially
combining information from multiple sources before arriving at the
final answer [7, 29]. Traditional retrieval-augmented generation
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Step1: LLM-based Prompt Extraction

Input: Who is Charles Bretagne Marie De La Trémoille's paternal grandfather?

Step4: Iterative Multi-Hop Question Splitting

Memory

Charles Bretagne Marie De La Trémoille was the son of Jean Bretagne Charles 
de La Trémoille.

Charles Bretagne Marie De La Trémoille married Louise-Emmanuelle de Châtillon 
in 1781. She was a granddaughter of Louis César de La Baume Le Blanc.

Son of
Charles Bretagne 
Marie De La 
Trémoille

Jean Bretagne 
Charles de La 
Trémoille

Married

Charles Bretagne 
Marie De La 
Trémoille

Louise-Emmanuell
e de Châtillon 

Who is the father of Jean Bretagne Charles de La Trémoille?

 Jean Bretagne Charles de La Trémoille was a 
French soldier and the son of Charles Armand René 
de La Trémoille.

Step 3: Step 3 – Memory & Filter 
(No/CoT/Conf/CoT+Conf)

Step 2 – Partial Generation + RIND 
(incl. Hallucination Check)

Jean    Bretagne  Charles   de      La     Trémoille  is 
                       

Charles  Bretagne Marie    De      La  Trémoille's  father.
                               

Final answer: Charles 
Armand René de La 
Trémoille 

0.56 0.79 0.82 0.23 0.19 0.45 0.12

0.72 0.76 0.81 0.19 0.12 0.31 0.47

Figure 1: Overview of MIND. Given a multi-hop query (e.g.,
“Who is Charles Bretagne Marie De La Trémoille’s paternal
grandfather?”), Step 1 (§3.1) uses an LLM prompt to extract
candidate entities/facts. Step 2 (§3.2) monitors partial gen-
eration with RIND and triggers retrieval when uncertainty
rises. Step 3 (§3.3) stores high-confidence items in a memory
module while discarding low-confidence ones (using either
No Filter, CoT, Conf, or CoT+Conf). Step 4 (§3.4) repeats sub-
query refinement (e.g., “Who is Jean Bretagne Charles’s fa-
ther?”) until no further retrieval is needed, yielding the final
answer.

(RAG) methods often struggle with such tasks due to their inabil-
ity to adaptively retrieve information at the right moments,
sometimes retrieving too frequently or insufficiently [21, 30]. More-
over, these models lack mechanisms to robustly carry forward
partially retrieved facts, leading to incomplete reasoning chains or
redundant retrievals [11, 15, 19, 27, 28].

To address these challenges, recent studies have explored dy-
namic retrieval, where retrieval decisions are made adaptively
during inference rather than following a fixed schedule. Notable
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approaches include DRAGIN [21] and SEAKER [30], which trig-
ger retrieval based on real-time uncertainty signals. Meanwhile,
memory-based approaches, such as MemorAG [19], aim to track re-
liable facts to enhance reasoning consistency. Despite these efforts,
models still struggle with (1) Determining what to retrieve: as
chain-of-thought prompting [24] can introduce hallucinated enti-
ties, and purely confidence-based filtering may discard valuable but
uncertain information; and (2) Efficiently storing and reusing
relevant facts: without a structured memory mechanism, models
risk inconsistencies in multi-step reasoning.

To address these limitations, we propose MIND (Memory-
Informed & INteractive Dynamic RAG), a unified framework de-
signed for multi-hop QA. As shown in Figure 1, MIND employs
dynamic thresholding to monitor token-level entropy and atten-
tion patterns, determining when additional retrieval is required.
This process is guided by RIND (Retrieval-Integrated Neural
Decision-making), which adaptively triggers retrieval based on
real-time uncertainty signals. When retrieval is triggered, MIND
generates a sub-query—a refined query derived from intermediate
reasoning—to retrieve missing information while maintaining con-
textual relevance. Additionally, a memory store ensures retrieved
entities remain accessible across reasoning steps, while a flexible
filtering strategy balances recall and precision by integrating
chain-of-thought reasoning with confidence-based ranking.

We evaluate MIND on four widely used multi-hop QA datasets:
HotpotQA [29], 2WikiMultihopQA [7], StrategyQA [5], and IIRC [4].
Our experiments demonstrate that MIND significantly reduces un-
necessary retrieval calls while improving answer quality, as mea-
sured by F1 score and Exact Match (EM). Furthermore, detailed
analyses reveal how different filtering modes (e.g., chain-of-thought
vs. confidence ranking) impact retrieval efficiency and correctness,
offering insights into balancing efficiency with thorough multi-hop
reasoning. Our main contributions are as follows:
• Memory-aware dynamic retrieval: We introduce a retrieval
pipeline that adaptively triggers retrieval based on real-time
uncertainty signals.

• Entity-filtering strategies: We propose multiple techniques to
balance recall and precision, enhancing retrieval efficiency.

• Extensive empirical validation: We provide comprehensive
experiments and ablation studies on four datasets, demonstrating
the effectiveness of MIND for multi-step reasoning.

2 Related Work
2.1 Multi-Hop Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has significantly improved
open-domain QA by integrating external retrieval with language
models [2, 9, 12–14, 17, 23, 25, 26, 32, 34]. Early approaches, such
as RETRO [1] and ICRALM [20], adopt static retrieval schedules,
triggering lookups at fixed intervals (e.g., every few tokens or sen-
tences). More recent dynamic retrieval strategies, including DRA-
GIN [21], FLARE [10], and SEAKER [30], adaptively determine
when additional retrieval is necessary, improving multi-hop rea-
soning efficiency.

Some of these dynamic retrieval approaches incorporate entity-
based retrieval mechanisms to enhance sub-query generation. For
instance, GraphRAG [6] structures knowledge into relational graphs,

while KEPS [18] ranks extracted entities to improve retrieval preci-
sion. However, these methods often rely on static extraction thresh-
olds and lack adaptive mechanisms to dynamically refine retrieval
strategies. Our approach builds on these ideas by integrating a dy-
namic thresholding mechanism that refines entity selection based
on real-time retrieval signals, ensuring sub-queries remain contex-
tually relevant across reasoning hops.

2.2 Memory-Augmented Systems
Memory-augmented retrieval methods aim to enhance long-term
context awareness by retaining high-confidence facts across mul-
tiple retrieval steps. Early memory networks [22] introduced end-
to-end storage mechanisms, while more recent models like Mem-
oRAG [19] refine retrieval by persistently storing extracted entities.
However, these methods often lack adaptive filtering, leading to
redundant retrieval steps. and inefficient memory utilization.

Our approach builds upon these foundations by integrating a
dynamic memory mechanism that selectively retains and refines
stored information based on real-time uncertainty signals. This en-
hances retrieval efficiency and ensures consistent reasoning across
multi-hop QA tasks.

3 Methodology
We propose an integrated pipeline,MIND (Memory-Informed &
Interactive Dynamic RAG), for multi-hop question answering. As
shown in Figure 1, MIND interleaves generation with retrieval
based on a dynamic confidence/attention estimator.

3.1 Prompt Extraction
Given a question 𝑄 , we prompt an LLM to extract potentially rele-
vant entities and relations. For instance:

“Extract any names, events, or relationships that might
be relevant to answering 𝑄 .”

The LLM output is parsed to produce a list of candidate entities
{𝑒𝑖 } and their relations {𝑟𝑖 }. Notably, we do not request confidence
scores at this stage; these will be computed dynamically in later
retrieval steps (see Section 3.3).

3.2 Retrieval-Integrated Neural
Decision-making (RIND)

To determine when additional retrieval is required, we introduce
Retrieval-Integrated Neural Decision-making (RIND), a mech-
anism that adaptively triggers retrieval based on real-time uncer-
tainty signals. RIND monitors two key uncertainty signals: token-
level entropy and attention influence, which are formally de-
fined below.

3.2.1 Entropy and Attention Influence for Retrieval. At each decod-
ing step 𝑖 , let {𝑝 (𝑡 | context𝑖 )} be the probability distribution over
possible next tokens 𝑡 . We define entropy(𝑡𝑖 ) as:

entropy(𝑡𝑖 ) = −
∑︁
𝑡

𝑝
(
𝑡 | context𝑖

)
log 𝑝

(
𝑡 | context𝑖

)
, (1)

A larger entropy(𝑡𝑖 ) indicates greater uncertainty, suggesting
that more external information may be needed.
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We also measure the attention influence of token 𝑡𝑖 , defined as:

maxAttn(𝑡𝑖 ) = max
future tokens

AttentionWeight(𝑡𝑖 ) . (2)

IfmaxAttn(𝑡𝑖 ) is high, then 𝑡𝑖 strongly affects subsequent reasoning
steps. We trigger retrieval if any token’s uncertainty signal exceeds
a dynamic threshold 𝜃 :

𝜃 = 𝛼 mean
(
{entropy(𝑡𝑖 )}

)
+ 𝛽 mean

(
{maxAttn(𝑡𝑖 )}

)
, (3)

where 𝛼 and 𝛽 are tunable parameters. If max𝑖𝑆RIND (𝑡𝑖 ) > 𝜃 ,
retrieval is initiated.

3.3 Memory-Aware Entity Filtering
Once retrieval is triggered, we determine which extracted enti-
ties should be incorporated into the next sub-query. We employ
three filtering strategies: No Filtering, Chain-of-Thought (CoT)
Filtering, Confidence-Based Filtering, and Hybrid Filtering.

No Filtering (Baseline). This approach includes all extracted en-
tities and relations in the sub-query without ranking or pruning.
While maximizing recall, it risks incorporating irrelevant entities,
reducing retrieval efficiency.

Chain-of-Thought (CoT) Filtering. This filter ensures that ex-
tracted entities remain logically consistent with the original query
by validating them against structured reasoning steps.

Confidence-Based Filtering. We quantify each token’s uncertainty
and influence using entropy from Eq. 1 and 𝑎max from Eq. 2. For an
entity 𝑒 spanning token indices [𝑡𝑠 , 𝑡𝑒 ), we define:

conf (𝑒) = max
𝑡 ∈ [𝑡𝑠 , 𝑡𝑒 )

[
𝛾

1
1 + entropy(𝑡) + 𝛿 maxAttn(𝑡)

]
(4)

Entities with higher conf (𝑒) are preferred. We keep either the
top-𝑘 or those above a threshold.

Hybrid: CoT + Confidence Filtering. To further enhance precision,
we introduce a hybrid filtering approach that integrates CoT
Filtering with Confidence-Based Filtering. First, CoT filtering re-
moves logically inconsistent entities. Then, the remaining entities
are ranked using the confidence-based scoring function. The final
selection is determined using a predefined threshold or a top-𝑘
ranking strategy.

3.4 Iterative Multi-Hop Expansion
Many queries requiremultiple rounds of retrieval. Once new entities
are identified, a refined sub-query is formed (e.g., “Who is the father
of Jean Bretagne Charles de La Trémoille?”), and relevant facts are
retrieved. The retrieved facts are stored in memory 𝑀 , and the
model iterates through retrieval and generation steps (using RIND)
until no further retrieval is needed.

Final Processing. Once retrieval concludes, the model synthe-
sizes retrieved information to generate the final answer. Figure 1
illustrates an example of this iterative process.

4 Experiments and Results
In this section, we will present our systematic evaluation of the
proposed MIND framework on multi-hop QA tasks to verify its
efficiency and effectiveness in retrieving and aggregating external
knowledge. Specifically, we investigate three key aspects of MIND’s
performance.

First, we examine whether MIND outperforms existing dynamic
retrieval methods in terms of final answer accuracy under complex
multi-hop reasoning. Second, we evaluate the effectiveness of our dy-
namic thresholding strategy, which integrates attention and entropy
signals to reduce unnecessary retrieval calls while maintaining cor-
rectness. Finally, we analyze how the memory-aware design helps
maintain cross-hop consistency and mitigates the risk of dropping
or misusing key entities. We primarily used LLaMA3.1–8B model or
its distilled variant (DeepSeek R1 Distill LLaMA 8B). BM25 served
as our external retriever.

4.1 Datasets and Baselines
We evaluate MIND on four widely used multi-hop QA benchmarks:
HotpotQA (bridging reasoning across paragraphs), 2WikiMul-
tihopQA (multi-hop Wikipedia linking), StrategyQA (implicit
reasoning in yes/no format), and IIRC (reasoning with incomplete
context). We report Exact Match (EM) and F1, with Accuracy
additionally used for yes/no tasks.

We compare MIND against two dynamic retrieval baselines:
DRAGIN [21], which triggers retrieval based on a fixed confidence
threshold but lacks entity-levelmemory filtering, and SEAKER [30],
which generates partial sub-questions for retrieval but offers a less
flexible filtering mechanism. Additionally, we include a No Filter
baseline as a lower bound for comparison.

4.2 Overall Performance
As shown in Table 1, MIND consistently outperforms baselines
across all datasets. On HotpotQA, it improves EM and F1 by 2–3%,
indicating enhanced reasoning stability for bridging questions. On
2WikiMultihopQA, it achieves gains of +3.0% EM and +3.5% F1,
while on StrategyQA, its implicit reasoning capability leads to
2–4% higher accuracy. For IIRC, MIND reduces retrieval overhead
and mitigates incorrect references by pruning spurious entities.

4.2.1 Retrieval Frequency and Efficiency. We measured average re-
trieval calls and total token usage as indicators of system efficiency.
Table 2 shows that, compared with fixed-schedule retrieval (e.g., ev-
ery𝑛 sentences), MIND’s dynamic thresholding cuts unnecessary
retrieval by around 10–15% in the Llama3.1-8B based results. The
memory unit caches verified entities/facts across hops, preventing
repeated entity retrieval calls and reducing cost.

4.2.2 Ablation Study. We further analyze the impact of different
filtering strategies—No Filter,CoT Filter,Confidence Filter (Conf), and
the combined CoT+Conf—in Table 3. We find that No Filter tends
to introduce noise, which lowers the overall accuracy. By contrast,
CoT Filter removes off-topic reasoning, boosting performance
on complex bridging questions. Conf Filter improves sub-query
precision by ranking entities based on token-level entropy and
attention. Finally, CoT+Conf achieves the best balance of precision
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Table 1: Comparison of different ranking strategies on four multi-hop QA datasets (2Wiki, Hotpot, StrategyQA, IIRC), against
two baseline models: DeepSeek R1 Distill LLaMA 8B (left) and Llama3.1–8B (right). We report Exact Match (EM) and F1 (in %).

DeepSeek-R1-Distill-LLaMA-8B Llama3.1–8B

Method 2Wiki Hotpot Strategy IIRC 2Wiki Hotpot Strategy IIRC
EM F1 EM F1 ACC EM F1 EM F1 EM F1 ACC EM F1

Baseline
DRAGIN 30.0 38.5 30.5 40.1 65.0 18.0 21.9 30.4 39.3 31.4 42.4 63.9 18.5 22.2
SEAKER 31.0 40.1 31.2 42.0 66.1 18.8 22.5 31.2 40.6 32.1 44.8 65.0 19.3 23.0

MIND
No Filter 24.0±0.3 32.8±0.5 25.1±0.4 37.3±0.6 62.0±0.02 16.2±0.02 19.9±0.03 25.0±0.4 33.5±0.5 27.0±0.6 38.1±0.7 60.0±0.02 17.8±0.3 21.5±0.4
Confidence Filter 29.5±0.4 38.0±0.5 30.2±0.5 39.9±0.6 67.0±0.02 16.5±0.02 18.4±0.03 30.0±0.4 38.8±0.5 31.0±0.6 40.2±0.7 69.0±0.02 18.3±0.3 22.8±0.4
CoT Filter 33.2±0.5 42.3 ±0.6 32.8±0.6 45.2±0.7 56.0±0.02 16.5±0.02 19.4±0.04 34.0±0.5 43.0±0.6 34.5±0.6 46.5±0.7 67.0±0.02 20.8±0.4 25.0±0.5

Conf + CoT 31.0±0.6 38.5±0.7 31.9±0.7 43.8±0.8 48.4±0.02 18.4±0.01 20.9±0.04 32.0±0.4 41.7±0.5 35.8±0.7 47.2±0.8 62.0±0.02 12.0±0.05 13.9±0.06

and recall, with (𝛾 = 1.0, 𝛿 = 0.2) yielding the highest EM/F1 on
HotpotQA.

Notably, in more straightforward queries (e.g. yes/no classifi-
cation), certain baselines such as DRAGIN or SEAKER can occa-
sionally match or exceed our method. We suspect these baselines
are well-tuned for single-step retrieval on short questions, whereas
MIND is designed for more complex multi-hop reasoning.

4.2.3 Fixed vs. Dynamic Thresholding. We also explore the effec-
tiveness of our dynamic thresholding approach in deciding when to
trigger retrieval. Table 4 compares a fixed threshold of 0.6 against
our dynamic threshold on the HotpotQA dev set. Although the
performance gap is modest (e.g. EM = 0.304 vs. 0.309), we observe
a consistent improvement in both EM and F1 under the dynamic
scheme. This indicates that adaptively adjusting the threshold based
on token-level uncertainty can better handle questions of varying
complexity than a single, fixed cutoff.

4.2.4 Limitations of CoT + Conf Filtering. Although combining
CoT and Conf generally enhances retrieval, Table 1 shows that
it does not always outperform using either filter alone. In simple
queries (e.g., “Who is older, Annie Morton or Terry Richardson?”),
chain-of-thought reasoning may introduce unnecessary elabora-
tion, which the confidence filter repeatedly prunes—adding over-
head. Excessive filtering can also remove low-certainty but nec-
essary bridging entities, weakening multi-hop reasoning. Finally,
while CoT expansion and Conf pruning can complement each other
on complex queries, their interplay may be redundant or contradic-
tory on straightforward tasks. As a result, CoT+Conf often excels
on intricate bridging questions but can trail simpler approaches in
more direct scenarios.

5 Conclusion and Future Work
In this paper, we introduced a novel approach to enhance multi-hop
retrieval-augmented generation by incorporating dynamic thresh-
olding, prompt-based entity extraction, and memory-aware queries.
Our experiments show that these enhancements significantly im-
prove multi-hop reasoning, entity coverage, and final answer qual-
ity.

Future work will focus on extending this framework to conver-
sational AI systems, where multi-turn interactions require robust

Table 2: Average retrieval calls (#Ret) across four datasets
under differentmethods. “DS” =DeepSeek, “L3.1” = Llama3.1–
8B.

Method #Ret (DS / L3.1)

2Wiki Hotpot Strategy IIRC

No Filter 4.25 / 3.10 4.15 / 2.80 4.36 / 3.39 4.56 / 3.13
Confidence Filter 4.20 / 3.04 4.05 / 2.75 4.30 / 3.20 4.35 / 3.00
CoT Filter 4.28 / 3.04 4.10 / 2.50 4.86 / 3.39 4.44 / 3.10
Conf + CoT 4.21 / 3.02 4.08 / 2.90 4.79 / 3.60 4.60 / 3.15

DRAGIN[21] 3.90 / 2.80 3.85 / 3.10 3.95 / 2.75 4.00 / 2.90
SEAKER[30] 3.80 / 2.60 3.75 / 2.90 3.85 / 2.70 3.90 / 2.85

Table 3: Effect of different aggregator hyperparameters (𝛾, 𝛿)
on HotpotQA dev set.

𝛾 𝛿 EM F1 #Ret

0.5 0.1 0.290 0.382 3.4
1.0 0.2 0.296 0.388 3.2
1.5 0.3 0.293 0.386 3.3

Table 4: Comparison of fixed threshold = 0.6 vs. dynamic
threshold on HotpotQA.

Threshold EM F1 Prec.

0.6 (Fixed) 0.304 0.393 0.395
Dynamic 0.309 0.399 0.402

retrieval strategies. Additionally, we aim to explore cross-domain
applications, as our model’s dynamic retrieval mechanism could
be beneficial for tasks requiring adaptive reasoning across het-
erogeneous knowledge sources. Another important direction is
improving memory update mechanisms to handle long-term
dependencies, as our analysis suggests that entity retention plays a
crucial role in maintaining cross-hop consistency.

Our experiments demonstrate that memory-aware retrieval and
confidence-guided entity filtering significantly improve multi-hop
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QA performance, particularly in reducing unnecessary retrievals
while maintaining accuracy. Compared to existing baselines, MIND
achieves higher entity coverage, more precise retrieval triggers,
and improved final answer correctness across multiple datasets.
Further optimizations in retrieval efficiency will be essential for
scaling this approach to large-scale QA applications.
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